首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
In response to an oxygenated gasoline release at a gas station site in New Hampshire, a temporary treatment system consisting of a single bedrock extraction well, a product recovery pump, an air stripper, and carbon polishing units was installed. However, this system was ineffective at removing tertiary butyl alcohol from groundwater. The subsequent remedial system design featured multiple bedrock extraction wells and an ex situ treatment system that included an air stripper, a fluidized bed bioreactor, and carbon polishing units. Treated effluent was initially discharged to surface water. Periodic evaluation of the remediation system performance led to system modifications, which included installing an additional extraction well to draw contaminated groundwater away from an on‐site water supply well, adding an iron and manganese pretreatment system, and discharge of treated effluent to an on‐site drywell. Later, the air stripper and carbon units were eliminated, and an infiltration gallery was installed to receive treated, oxygenated effluent in order to promote flushing of the smear zone and in situ bioremediation in the source area. This article discusses the design, operation, performance, and modifications to the remediation system over time, and provides recommendations for similar sites. © 2007 Wiley Periodicals, Inc.  相似文献   

2.
Groundwater at the former Serry's Dry Cleaning site in Corvallis, Oregon, was impacted by chlorinated volatile organic compounds (CVOCs). The primary CVOCs impacting the site include tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride, which were detected at concentrations up to 22,000, 1,700, 3,100, and 7 μg/L, respectively, prior to treatment. Large seasonal fluctuations in groundwater CVOC concentrations indicated that a significant fraction of the CVOC mass was present in the smear zone. Field‐scale pilot tests were performed for the Oregon Department of Environmental Quality's Dry Cleaner Program to evaluate the performance of EHC® in situ chemical reduction (ISCR) technology. The pilot study involved evaluating field performance and physical distribution into low‐permeability soil using basic Geoprobe® injection tooling. The testing results confirmed that bioremediation enhanced by ISCR supported long‐term treatment at the site. This article describes the implementation and results of the tests. Performance data are available from a three‐year period following the injections, allowing for a discussion about sustained performance and reagent longevity. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号