首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Daytime light intensity can affect the photoperiodic regulation of the reproductive cycle in birds. The actual way by which light intensity information is transduced is, however, unknown. We postulate that transduction of the light intensity information is mediated by changes in the pattern of melatonin secretion. This study, therefore, investigated the effects of high and low daytime light intensities on the daily melatonin rhythm of Afro-tropical stonechats (Saxicola torquata axillaris) in which seasonal changes in daytime light intensity act as a zeitgeber of the circannual rhythms controlling annual reproduction and molt. Stonechats were subjected to light conditions simulated as closely as possible to native conditions near the equator. Photoperiod was held constant at 12.25 h of light and 11.75 h of darkness per day. At intervals of 2.5 to 3.5 weeks, daytime light intensity was changed from bright (12,000 lux at one and 2,000 lux at the other perch) to dim (1,600 lux at one and 250 lux at the other perch) and back to the original bright light. Daily plasma melatonin profiles showed that they were linked with changes in daytime light intensity: Nighttime peak and total nocturnal levels were altered when transitions between light conditions were made, and these changes were significant when light intensity was changed from dim to bright. We suggest that daytime light intensity could affect seasonal timing via changes in melatonin profiles. Professor Dr. E. Gwinner died on 07 September 2004.  相似文献   

2.
The pineal organ of vertebrates is a photo-sensitive structure that conveys photoperiod information to the brain. This information influences circadian rhythm and related metabolic processes such as thermoregulation, hatching time, body growth, and the timing of reproduction. This study demonstrates extra-ocular light responses that control swim depth in the larva of the Atlantic halibut, Hyppoglosus hyppoglosus. Young larvae without a functional eye (<29 days) swim upwards after an average delay of 5 s following the onset of a downwelling light stimulus, but sink downwards a few seconds later. Older larvae (₉ days), which possess a functional eye, swim immediately downwards (microsecond delay) following the onset of the light stimulus, but proceed to swim upwards several seconds later. These two response patterns are thus opposite in polarity and have different time kinetics. Because the pineal organ of the Atlantic halibut develops during the embryonic stage, and because it is the only centre in the brain that expresses functional visual pigments (opsins) at early larval stages, it is the only photosensory organ capable of generating the extra-ocular responses observed.  相似文献   

3.
The regular day-night changes in tissues, physiologic functions, and behavior of organisms are based on endogenous rhythmic processes which under constant conditions continue with periods slightly deviating from 24h. These ‘arcadian’ rhythms have properties of self-sustained oscillators. Under natural conditions, circadian rhythms are synchronized (entrained) to 24 h by periodic factors in the environment, the so-called ‘Zeitgebers’. In the laboratory, circadian rhythms can also be entrained to periods other than 24 h within certain limits. Data on the phase relationship between the circadian rhythm and an entraining light-dark cycle for vertebrates, insects, plants, and unicellular organisms are reviewed.  相似文献   

4.
The efficacy of bright photophase (BP) in accelerating the re-entrainment of Drosophila biarmipes rhythm following 8?h phase advance and delay of light–dark (LD) cycle was examined by subjecting the flies to 24?h LD cycles with dim photophase (DP) at 30?lx and BP at 300?lx. Re-entrainment was analysed by using the activity onset, activity offset and the duration of activity. Following LD advance or delay, the BP flies re-entrained faster than the DP flies which was attributed to the enhanced zeitgeber strength of BP. Nevertheless, the re-entrainment was a protracted process even in the BP flies since the activity offsets underwent more transients than the activity onsets. Thus, this study demonstrates that the BP accelerates the re-entrainment in D. biarmipes. It, however, also reveals that the re-entrainment is a prolonged process when the activity onset and offset are regarded as the rhythm markers.  相似文献   

5.
We report that l-5-hydroxytryptophan (5-HTP), a serotonin precursor, resets the overt circadian rhythm in the Indian pygmy field mouse, Mus terricolor, in a phase- and dose-dependent manner. We used wheel running to assess phase shifts in the free-running locomotor activity rhythm. Following entrainment to a 12:12 h light–dark cycle, 5-HTP (100 mg/kg in saline) was intraperitoneally administered in complete darkness at circadian time (CT)s 0, 3, 6, 9, 12, 15, 18, and 21, and the ensuing phase shifts in the locomotor activity rhythm were calculated. The results show that 5-HTP differentially shifts the phase of the rhythm, causing phase advances from CT 0 to CT 12 and phase delays from CT 12 to CT 21. Maximum advance phase shift was at CT 6 (1.18 ± 0.37 h) and maximum delay was at CT 18 (−2.36 ± 0.56 h). No extended dead zone is apparent. Vehicle (saline) at any CT did not evoke a significant phase shift. Investigations with different doses (10, 50, 100, and 200 mg/kg) of 5-HTP revealed that the phase resetting effect is dose-dependent. The shape of the phase–response curve (PRC) has a strong similarity to PRCs obtained using some serotonergic agents. There was no significant increase in wheel-running activity after 5-HTP injection, ruling out behavioral arousal-dependent shifts. This suggests that this phase resetting does not completely depend on feedback of the overt rhythmic behavior on the circadian clock. A mechanistic explanation of these shifts is currently lacking.  相似文献   

6.
Scavenging activities of melatonin, which is a pineal secretory product and functions in circadian biology, and its related compounds against reactive oxygen species such as superoxide anion radical, hydrogen peroxide, hydroxyl radical and singlet oxygen as well as organic peroxide radical (t-BuOO”) were evaluated chemically by using electron spin resonance-spin trap and chemiluminescence methods. Antioxidative activity of the compounds was estimated by IC50 value (µM), 50% inhibiting concentration of a compound against reactive oxygen species formed in each system, and the second-order rate constants (k2) for the reactions of the compounds and superoxide anion radical or hydroxyl radical. Because melatonin has exhibited the highest scavenging activity against t-BuOO”, the biochemical anti-lipid peroxide radical scavenging activities of melatonin were examined. We found that melatonin exhibits higher anti-lipid peroxidative activity in the rat brain microsomes than in the rat liver microsomal and liposomal systems, suggesting that melatonin may function as a treatment for reactive oxygen species-related diseases of the brain.  相似文献   

7.
Vertebrate visual cells represent a system in an extraordinarily dynamic state. Major parts of the photoreceptors are continually degraded and resynthesized, thus, the cell's morphological and functional integrity is maintained. Some components of visual cell renewal processes follow an endogenous, circadian rhythm driven by an ocular oscillator. Regulative mechanisms of these circadian rhythms may comprise interactions between the neurohormone melatonin and the putative retinal neurotransmitter and neuromodulator dopamine.  相似文献   

8.
The locomotor activity rhythm of flies from four populations of Drosophila melanogaster, maintained under constant light for more than 600 generations, was recorded in continuous light (LL) and continuous darkness (DD) using four different protocols. The main objective behind these experiments was to estimate the proportion of flies exhibiting circadian rhythm of locomotor activity in LL, and to investigate whether this could be increased by subjecting the flies to various light regimes. About 26% of the flies exhibited a circadian rhythm of locomotor activity in LL, and the proportion increased to about 48% after an exposure to 12 h of darkness. About 77% of the flies exhibited a circadian locomotor activity rhythm in DD. Persistence of circadian locomotor activity rhythm in a considerable proportion of these flies suggests an intrinsic adaptive value to possessing circadian rhythmicity, derived, perhaps, from the need to synchronise various processes within the organism.  相似文献   

9.
Non-mammalian vertebrates have multiple extraocular photoreceptors, mainly localised in the pineal complex and the brain, to mediate irradiance detection. In this study, we report the full-length cDNA cloning of ruin lizard melanopsin and pinopsin. The high level of identity with opsins in both the transmembrane regions, where the chromophore binding site is located, and the intracellular loops, where the G-proteins interact, suggests that both melanopsin and pinopsin should be able to generate a stable photopigment, capable of triggering a transduction cascade mediated by G-proteins. Phylogenetic analysis showed that both opsins are located on the expected branches of the corresponding sequences of ortholog proteins. Subsequently, using RT-PCR and RPA analysis, we verified the expression of ruin lizard melanopsin and pinopsin in directly photosensitive organs, such as the lateral eye, brain, pineal gland and parietal eye. Melanopsin expression was detected in the lateral eye and all major regions of the brain. However, different from the situation in Xenopus and chicken, melanopsin is not expressed in the ruin lizard pineal. Pinopsin mRNA expression was only detected in the pineal complex. As a result of their phylogenetic position and ecology, reptiles provide the circadian field with some of the most interesting models for understanding the evolution of the vertebrate circadian timing system and its response to light. This characterization of melanopsin and pinopsin expression in the ruin lizard will be important for future studies aimed at understanding the molecular basis of circadian light detection in reptiles.  相似文献   

10.
Here, we provide evidence for a wavelength-dependent effect of light on magnetic compass orientation in Pelophylax perezi (order Anura), similar to that observed in Rana catesbeiana (order Anura) and Notophthalmus viridescens (order Urodela), and confirm for the first time in an anuran amphibian that a 90° shift in the direction of magnetic compass orientation under long-wavelength light (≥500 nm) is due to a direct effect of light on the underlying magnetoreception mechanism. Although magnetic compass orientation in other animals (e.g., birds and some insects) has been shown to be influenced by the wavelength and/or intensity of light, these two amphibian orders are the only taxa for which there is direct evidence that the magnetic compass is light-dependent. The remarkable similarities in the light-dependent magnetic compasses of anurans and urodeles, which have evolved as separate clades for at least 250 million years, suggest that the light-dependent magnetoreception mechanism is likely to have evolved in the common ancestor of the Lissamphibia (Early Permian, ~294 million years) and, possibly, much earlier. Also, we discuss a number of similarities between the functional properties of the light-dependent magnetic compass in amphibians and blue light-dependent responses to magnetic stimuli in Drosophila melanogaster, which suggest that the wavelength-dependent 90° shift in amphibians may be due to light activation of different redox forms of a cryptochrome photopigment. Finally, we relate these findings to earlier studies showing that the pineal organ of newts is the site of the light-dependent magnetic compass and recent neurophysiological evidence showing magnetic field sensitivity in the frog frontal organ (an outgrowth of the pineal).  相似文献   

11.
This paper describes experiments on the locomotor activity rhythm of queens of the ant species Camponotus compressus, which were performed to investigate the consequences of mating on circadian clocks. Locomotor activity rhythm of virgin and mated queens was monitored individually under constant conditions of the laboratory. The locomotor activity rhythm of virgin queens entrained to a 24 h (12:12 h) laboratory light/dark (LD) cycle and free-ran under constant dim red light (RR) with a free-running period () of approximately 24 h. The locomotor activity of the mated queens on the other hand was arrhythmic during the period when they were laying eggs, and robust rhythmicity appeared soon after the egg-laying phase was over. The of the locomotor activity rhythm of mated queens was significantly greater than that of virgin queens. These results are contrary to the commonly held belief that the role of circadian clocks in ant queens ceases after mating flights, thus suggesting that circadian clocks of ant queens are adaptively plastic and display activity patterns, perhaps depending on their physiological state and tasks in the colony.  相似文献   

12.
 The ubiquity of circadian rhythms suggests that they have an intrinsic adaptive value (Ouyang et al. 1998; Ronneberg and Foster 1997). Some experiments have shown that organisms have enhanced longevity, development time or growth rates when maintained in environments whose periodicity closely matches their endogenous period (Aschoff et al. 1971; Highkin and Hanson 1954; Hillman 1956; Pittendrigh and Minis 1972; Went 1960). So far there has been no experimental evidence to show that circadian rhythms per se (i.e. periodicity itself, as opposed to phasing properties of a rhythm) confer a fitness advantage. We show that the circadian eclosion rhythm persists in a population of the fruitfly Drosophila melanogaster maintained in constant conditions of light, temperature, and humidity for over 600 generations. The results suggest that even in the absence of any environmental cycle there exists some intrinsic fitness value of circadian rhythms. Received: 2 November 1998 / Accepted in revised form: 22 April 1999  相似文献   

13.
 This paper reports study of day-to-day instability in the locomotor activity rhythm of the nocturnal field mouse Mus booduga. The free-running period (τ) of this rhythm was estimated in constant darkness in n=347 adult male mice. The "onset" and "offset" of locomotor activity rhythm were used as phase markers of the circadian clock. The precision of the onset of locomotor activity was observed to be a non-linear function of τ, with maximal precision at τ close to 24 h. The precision of the offset of locomotor activity was found to increase with increasing τ. These results suggest that the homeostasis of τ is tighter when τ is close to 24 h. Received: 5 May 1998 / Accepted: 11 February 1999  相似文献   

14.
Seasonality in freerunning circadian rhythms in man   总被引:3,自引:0,他引:3  
Retrospective analysis of data collected over 15 years in normal subjects isolated from time cures showed seasonal rhythms in the circadian period of the core temperature rhythm, in the amount of sleep (both shorter in spring and longer in autumn), and in the incidence of internal desynchronisation (most often in summer). Women slept longer than men at all times of year.  相似文献   

15.
Biological rhythms are a result of interplay between endogenous clocks and the ambient light–dark (LD) cycle. Biological timing in resident polar organisms presents a conundrum because these experience distinct daily LD cycles for only a few weeks each year. We measured locomotor activity in reindeer, Rangifer tarandus platyrhynchus (SR, n = 5 and 6) and R. tarandus tarandus (NR, n = 6), ranging freely at 78 and 70°N, respectively, continuously throughout 1 year using data loggers. NR, but not SR, are gregarious which enabled us to examine the integrated effects of differences in social organisation and the photic environment at two different latitudes on the organisation of activity. In both sub-species, ultradian bouts of activity and inactivity alternated across the 24-h day throughout the year. This pattern was modified by the LD cycle in NR but barely at all in SR. Periodogram analysis revealed significant ultradian rhythmicity in both sub-species; the frequency of daily cycles of activity increased from three per day in winter to nearly five in summer. We conclude that this increase, and a concomitant increase in the level of daily activity, reflected the seasonal increase in the animals’ appetite and the quality of their forage. Secondly, the combination, most evident in SR, of a weak photic response, weak circadian mechanisms and a weak social synchronization reduces the constraints of biological timing in an environment which is effectively non-rhythmic most of the year and permits expression of the basic ultradian pattern of ruminant activity. Third, the weaker 24-h rhythmicity in SR compared to NR indicates a latitudinal decrease in circadian organization and photic responsiveness in Rangifer.  相似文献   

16.
Mutations for activity level, designated hpa and hra, in Drosophila jambulina altered properties of the pacemaker controlling eclosion rhythm. Entrainment of eclosion rhythm was studied in light-dark (LD) cycles of 12:12 h at 28°C. The wild type strain entrained to LD cycles but the hpa or hra strain did not. When these strains were released from constant light (LL) to constant darkness (DD), the wild type strain free-ran while other two strains were arrhythmic. Temperature cycles entrained the wild type and hpa strain in DD and LL, and when transferred to constant temperature following thermoperiodic entrainment, the wild type strain free-ran in DD, while the hpa strain free-ran in LL as if the input of LL was essential for its free-running state. Temperature cycles entrained the hra strain in DD but not in LL, and free-running rhythmicities were never established, suggesting that the hra mutation has altered the basic properties of its pacemaker.  相似文献   

17.
Magnetic field of the earth as additional zeitgeber for endogenous rhythms?   总被引:1,自引:0,他引:1  
The influence of 50% decrease and increase of the earth magnetic field on the activity of the enzymes hydroxyindole-O-methyltransferase (HIOMT) and N-acetyl-serotonintransferase (NAT) is proved in vivo and in vitro. NAT and HIOMT catalyse the melatonin biosynthesis in the pineal gland and in the retina. Our results support the hypothesis of Leask and Schulten, that molecular magnetic field sensitivity is the basis of animals' magnetic field detection.  相似文献   

18.
Chronotoxicological studies were performed with dichlorphos (DDVP) and its timing toxic effects on mice and humans. The circadian rhythms were revealed in the blood cholinesterase (ChE) activity in intact mice and normal persons, as well as in mice mortality treated at different daily times. The inverse relationship of the two rhythm suggested that the risk of exposure to DDVP might be much higher at evening hours than in other clocks of the day, and the disappearance of the ChE rhythms in DDVP-treated mice and DDVP-exposed workers implicated a disturbing effect of DDVP on the maintenance and regulation of the rhythmic mechanisms.  相似文献   

19.
The locomotor activity rhythm of different castes of the ant species Camponotus compressus was monitored individually under laboratory light/dark (LD) cycles, and under continuous darkness (DD). The colony of this ant species comprises two sexual castes, the queens and the males, and three worker castes, namely the major, media, and minor workers. The virgin males and virgin queens display rhythmic activity patterns, but the mated queens were arrhythmic while laying eggs, with the rhythmicity resuming soon after egg-laying. Under the LD regime, major workers showed nocturnal patterns, while about 75% of the media workers displayed nocturnal patterns and about 25% showed diurnal patterns. Under the DD regime, most major workers exhibited circadian rhythm of activity with a single steady state, whereas media workers displayed two types of activity patterns, with activity patterns changing after 6–9 days in DD (turn-arounds). The pre-turn-around of the ants that showed nocturnal activity patterns during LD entrainment was <24 h after release into DD, which then became >24 h, after 6–9 days. On the other hand, the pre-turn-around of those ants that exhibited diurnal patterns during LD entrainment was first >24 h after release into DD, and then became <24 h, after 6–9 days. The activity of the minor workers neither entrained to LD cycles nor showed any sign of free-run in DD. It appears that the circadian clocks of the ant species C. compressus are flexible, and may perhaps depend upon the tasks assigned to them in the colony.  相似文献   

20.
Do birds sleep in flight?   总被引:1,自引:0,他引:1  
The following review examines the evidence for sleep in flying birds. The daily need to sleep in most animals has led to the common belief that birds, such as the common swift (Apus apus), which spend the night on the wing, sleep in flight. The electroencephalogram (EEG) recordings required to detect sleep in flight have not been performed, however, rendering the evidence for sleep in flight circumstantial. The neurophysiology of sleep and flight suggests that some types of sleep might be compatible with flight. As in mammals, birds exhibit two types of sleep, slow-wave sleep (SWS) and rapid eye-movement (REM) sleep. Whereas, SWS can occur in one or both brain hemispheres at a time, REM sleep only occurs bihemispherically. During unihemispheric SWS, the eye connected to the awake hemisphere remains open, a state that may allow birds to visually navigate during sleep in flight. Bihemispheric SWS may also be possible during flight when constant visual monitoring of the environment is unnecessary. Nevertheless, the reduction in muscle tone that usually accompanies REM sleep makes it unlikely that birds enter this state in flight. Upon landing, birds may need to recover the components of sleep that are incompatible with flight. Periods of undisturbed postflight recovery sleep may be essential for maintaining adaptive brain function during wakefulness. The recent miniaturization of EEG recording devices now makes it possible to measure brain activity in flight. Determining if and how birds sleep in flight will contribute to our understanding of a largely unexplored aspect of avian behavior and may also provide insight into the function of sleep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号