首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stable 13C and 15N isotope analyses of scale, bone, and muscle tissues were used to investigate diet and trophic position of North Atlantic bluefin tuna (Thunnus thynnus Linnaeus) during residency in the northwest Atlantic Ocean off the northeast coast of the United States. Adult bluefin tuna scales collected from fish between June and October 2001 were significantly enriched in 13C compared to both muscle and bone across all months, while muscle was significantly enriched in 15N compared to either bone or scale throughout the same period. In muscle tissue, there was evidence of a shift over the summer from prey with 13C values (–17 to –18) that were characteristic of silver hake (Merluccius bilinearis) to species with 13C values of –20 to –21 that were similar to Atlantic herring (Clupea harengus) and sandlance (Ammodytes americanus). Depletion of 15N values in adult scales and bone compared to muscle tissue may be explained by bone and scale samples representing juvenile or life-long feeding habits, isotopic routing, or isotopic differences in amino acid composition of the three tissue types. Adult bluefin tuna were estimated to be feeding at a trophic position similar to pelagic sharks in the northwest Atlantic Ocean, while the trophic positions of yellowfin tuna (Thunnus albacares), albacore tuna (Thunnus alalunga), and juvenile bluefin tuna were indicative of a diet of up to a full trophic position below adult bluefin tuna. The close relationship between the juvenile bluefin 15N values and those of suspension feeders suggests that nektonic crustaceans or zooplankton may contribute significantly to the diet of bluefin tuna, a food source previously overlooked for this species in the northwest Atlantic Ocean.Communicated by J.P. Grassle, New Brunswick  相似文献   

2.
This study aims to describe the variability of albacore (Thunnus alalunga) diet in the Northeast Atlantic and Mediterranean Sea and to identify possible relationships between this variability and the features of different feeding areas, the behavior, and the energetic needs of albacore. Stomach contents from albacore caught in five zones of the Bay of Biscay and surrounding waters (n = 654) and three zones of the Mediterranean Sea (n = 152) were analyzed in terms of diet composition and stomach fullness. Carbon and nitrogen stable isotope and C/N ratios were measured for white muscle and liver from albacore in the Bay of Biscay (n = 41) and Mediterranean Sea (n = 60). Our results showed a spatial, seasonal, inter-annual, and size-related variability in the diet of albacore. Albacore diet varied by location in the Mediterranean Sea, with a particularly high proportion of cephalopods, and low δ15N values in the Tyrrhenian Sea. In the Northeast Atlantic, albacore consumed a higher proportion of crustaceans and a lower proportion of fishes in the most offshore sampling zone than inshore. The digestion states of the major prey reflected a diurnal feeding activity, indicative of feeding in deeper waters offshore, whereas on the continental slope, feeding probably occurred in surface waters at night. Important seasonal and inter-annual diet variability was observed in the southeast of the Bay of Biscay, where preferred albacore prey appeared to be anchovy (Engraulis encrasicolus). Stomach fullness was inversely related to body size, probably reflecting higher energetic needs for smaller individuals. Albacore from the Bay of Biscay had significantly lower δ13C and higher δ15N values compared with albacore from the Mediterranean Sea, indicative of regional baseline shifts, and trophic position and muscle lipid stores in albacore increased with body size.  相似文献   

3.
Within the tropical and subtropical oceans, tuna forage opportunistically on a wide variety of prey. However, little is known about the trophic ecology of the smallest size classes which play an important role in stock assessments and fisheries management. The foraging behavior of yellowfin tuna, Thunnus albacares (23.5–154.0 cm FL), collected from nearshore Fish Aggregating Devices (FADs) around Oahu was studied using stable isotope and stomach contents analyses. Emphasis was placed on small juveniles. Yellowfin tuna changed their diets significantly between 45 and 50 cm forklength (ca. 1.5 kg). Smallest size classes fed on planktonic organisms inhabiting the shallow mixed layer, primarily larval stomatopod and decapod crustaceans, whereas larger tuna fed on teleosts and adult Oplophorus gracilirostris, a vertically migrating mesopelagic species of shrimp. When interpreting the variation in prey δ 15N values, we considered both their relative trophic position and δ 15N values of the nitrogen at the base of the food web. Based on the distinct diet shift of the yellowfin tuna, demonstrated by both isotope and stomach content analyses, we propose a critical mass threshold was reached at about 45 cm FL that enabled sufficient endothermic capability to allow tuna to access prey dwelling in deeper, colder water. These ontogenetic changes in foraging range and commensurate shift in diet of small tunas would affect their vulnerability to fishing pressure.  相似文献   

4.
Electronic tags were used to examine the biology of Atlantic bluefin tuna (Thunnus thynnus L.) on their breeding grounds in the Gulf of Mexico (GOM). The hypothesis that movement patterns, diving behavior, and thermal biology change during different stages of the breeding migration was tested. Mature Atlantic bluefin tuna tagged in the western Atlantic and the GOM, were on their breeding grounds from February to June for an average of 39 ± 11 days. The bluefin tuna experienced significantly warmer mean sea surface temperatures (SSTs) within the GOM (26.4 ± 1.6°C) than outside the GOM (20.2 ± 1.9°C). As the bluefin tuna entered and exited the GOM, the fish dove to daily maximum depths of 568 ± 50 and 580 ± 144 m, respectively, and exhibited directed movement paths to and from the localized breeding areas. During the putative breeding phase, the bluefin tuna had significantly shallower daily maximum depths (203 ± 76 m), and exhibited shallow oscillatory dives during the night. The movement paths of the bluefin tuna during the breeding phase were significantly more residential and sinuous. The heat transfer coefficients (K) were calculated for a bluefin tuna in the GOM using the recorded ambient and body temperatures. The K for this fish increased rapidly at the high ambient temperatures encountered in the GOM, and was significantly higher at night in the breeding phase when the fish was exhibiting shallow oscillatory dives. This suggests that the fish were behaviorally and physiologically thermoregulating in the Gulf of Mexico. This study demonstrates that the movement patterns, diving behavior, and thermal biology of Atlantic bluefin tuna change significantly at different stages of the breeding migration and can be used to define spawning location and timing. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

5.
Population subdivision was examined in Atlantic bluefin tuna (Thunnus thynnus) through sequencing of the control region of the mitochondrial genome. A total of 178 samples from the spawning grounds in the Gulf of Mexico, Bahamas and Mediterranean Sea were analyzed. Among the samples from these locations were 36 electronically tagged bluefin tuna that were tagged in the North Atlantic and subsequently traveled to one of these known spawning grounds during the spawning season. Bluefin tuna populations from the Gulf of Mexico and the Mediterranean Sea were found to be genetically distinct based on Φst, and sequence nearest neighbor analyses, showing that these two major spawning areas support independent stocks. Sequence nearest neighbor analysis indicated significant population subdivision among the Gulf of Mexico, western Mediterranean and eastern Mediterranean Sea. However, it was not possible to find significant pairwise differences between any sampling areas when using all samples. If only samples that had a high likelihood of assignment to a specific spawning site were used (young of the year, spawning adults), the differentiation increased among all sampling areas and the Western Mediterranean Sea was distinct from the Eastern Mediterranean Sea and the Gulf of Mexico. It was not possible to distinguish samples from the Bahamas from those collected at any of the other sampling sites. These data support tagging results that suggested distinctness of the Gulf of Mexico, Eastern and Western Mediterranean Sea spawning areas. This level of stock differentiation is only possible if Atlantic bluefin tuna show strong natal homing to individual spawning grounds.  相似文献   

6.
Feeding ecology of juvenile green turtles (Chelonia mydas) was studied from 2008 to 2011 at Samborombón Bay (35°30′–36°30′S, Argentina), combining data on digestive tract examination and stable isotope analysis through a Bayesian mixing model. We found that animal matter, in particular gelatinous plankton, was consumed in large proportions compared to herbivorous food items such as terrestrial plants and macroalgae. This diet is facilitated by the high abundance of gelatinous plankton in the region, thus confirming the adaptive foraging behaviour of the juveniles according to prey abundance in the SW Atlantic. To our knowledge, this is the first study to employ this combination of techniques and to conclusively demonstrate that animal matter, in particular gelatinous plankton, is important in the diet of the neritic green sea turtles.  相似文献   

7.
The reproductive status and body condition of 195 (≥185 cm curved fork length, CFL; assigned age 7 and above) Atlantic bluefin tuna were assessed in the Gulf of Maine during the commercial fishing season of June–October, 2000–2002. Given the distance between known spawning and feeding grounds, the prevailing paradigm for Atlantic bluefin tuna (Thunnus thynnus thynnus, L.) suggests that the most likely histological state for females arriving in the Gulf of Maine after spawning would be a resting or quiescent state with little or no perigonadal fat. Alternatively, the presence of mature or mature-inactive histological states in some females supports a more varied or individualistic model for bluefin reproduction. No relationship was found between body condition and reproductive status. Males were found in all reproductive stages, but were more likely to be in spawning condition (stages 4 and 5) or a mature-inactive state (stage 6) in June and July. Female bluefin tuna were found in stage 1 (immature or non-spawning) and stage 6 (mature-inactive). Stage 6 females were only present in June and July and smaller females (<235 cm CFL) were more likely to be in stage 6 than large females (>235 cm CFL) sampled during those same months. The presence of smaller females in stage 6 arriving at the same time as larger females in stage 1 indicates that Western Atlantic bluefin tuna may have an asynchronous reproductive schedule and may mature at a smaller size than the currently accepted paradigm suggests.  相似文献   

8.
Stomach content analyses are commonly used to study both fish feeding behaviour and trophic conditions. However, the interpretation of such data depends on fish foraging behaviour for a given environment and how representative the stomach contents are to the prey distribution. Tuna feeding behaviour was studied within the context of a research programme conducted in French Polynesia. Tuna prey distribution was characterised using acoustic measurements and pelagic trawls; thereafter, this distribution was compared with the stomach contents of tuna caught using an instrumented longline. Acoustic, pelagic trawling and stomach content analyses give complementary elements to describe the pelagic trophic habitat and to better understand tuna-prey relationships. The classic concept of a reduced food availability for tunas in the tropical pelagic environment seems relative. Tunas able to dive enough during daytime to exploit the migrant micronektonic species secure a source of regular food. This is particularly true of bigeye tuna (Thunnus obesus), which have ecophysiological capacities for this purpose. The behaviour of albacore tuna (T. alalunga), which dive >400 m in depth, remains less clear, as little is known about their vertical behaviour. Lastly, yellowfin tuna (T. albacares), which are distributed in more superficial waters, can better exploit the biomass of juvenile fish and crustaceans exported from the reefs. Analysis of the stomach fullness of tuna caught by longline, a passive gear, generally showed an empty state. This result suggests that most tuna foraging on large prey aggregations present in the study area are quickly satiated and escape longline capture and sampling. A consequence is that studies of tuna feeding behaviour based on longlining may be biased, particularly when large aggregations of prey are present such as in convergence zones. Another potential consequence is that longline tuna catch rates could differ according to prey richness. Longline tuna catch rates may sometimes reflect the relative abundance of prey rather than relative tuna abundance. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00227-001-0776-3.  相似文献   

9.
Electronic tagging and remotely sensed oceanographic data were used to determine the oceanographic habitat use and preferences of Atlantic bluefin tuna (Thunnus thynnus L.) exhibiting behaviors associated with breeding in the Gulf of Mexico (GOM). Oceanographic habitats used by 28 Atlantic bluefin tuna exhibiting breeding behavior (259 days) were compared with available habitats in the GOM, using Monte Carlo tests and discrete choice models. Habitat utilization and preference patterns for ten environmental parameters were quantified: bathymetry, bathymetric gradient, SST, SST gradient, surface chlorophyll concentration, surface chlorophyll gradient, sea surface height anomaly, eddy kinetic energy, surface wind speed, and surface current speed. Atlantic bluefin tuna exhibited breeding behavior in the western GOM and the frontal zone of the Loop Current. Breeding areas used by the bluefin tuna were significantly associated with bathymetry, SST, eddy kinetic energy, surface chlorophyll concentration, and surface wind speed, with SST being the most important parameter. The bluefin tuna exhibited significant preference for areas with continental slope waters (2,800–3,400 m), moderate SSTs (24–25 and 26–27°C), moderate eddy kinetic energy (251–355 cm2 s−2), low surface chlorophyll concentrations (0.10–0.16 mg m−3), and moderate wind speeds (6–7 and 9–9.5 m s−1). A resource selection function of the bluefin tuna in the GOM was estimated using a discrete choice model and was found to be highly sensitive to SST. These habitat utilization and preference patterns exhibited by breeding bluefin tuna can be used to develop habitat models and estimate the probable breeding areas of bluefin tuna in a dynamic environment.  相似文献   

10.
Ultrasonic, depth-sensitive transmitters were used to track the horizontal and vertical movements, for up to 48 h, of 11 adult (136 to 340 kg estimated body mass) North Atlantic bluefin tuna (Thunnus thynnus Linnaeus). Fish were tracked in October 1995, September and October 1996, and August and September 1997 in the Gulf of Maine, northwestern Atlantic. The objective was to document the behavior of these fish and their schools in order to provide the spatial, temporal, and environmental information required for direct (i.e. fishery-independent) assessment of adult bluefin tuna abundance using aerial surveys. Transmitters were attached to free-swimming fish using a harpoon attachment technique, and all fish remained within the Gulf of Maine while being followed. Most of the bluefin tuna tagged on Stellwagen Bank or in Cape Cod Bay (and followed for at least 30 h) held a predominately easterly course with net horizontal displacements of up to 76 km d−1. Mean (±SD) swimming depth for all fish was 14 ± 4.7 m and maximum depth for individuals ranged from 22 to 215 m. All but one fish made their deepest excursions, often single descents, at dawn and dusk. In general, adult bluefin tuna spent <8% of their time at the surface (0 to 1 m), <19% in the top 4 m, but >90% in the uppermost 30 m. Mean (±SD) speed over ground was 5.9 km h−1, but for brief periods surpassed 20 to 31 km h−1. Sea surface temperatures during tracking were 11.5 to 22.0 °C, and minimum temperatures encountered by the fish ranged from 6.0 to 9.0 °C. Tagged bluefin tuna and their schools frequented ocean fronts marked by mixed vertebrate feeding assemblages, which included sea birds, baleen whales, basking sharks, and other bluefin schools. Received: 19 July 1999 / Accepted: 25 March 2000  相似文献   

11.
We present the first quantitative analyses of dolphinfish (Coryphaena hippurus) foraging habits and trophic interactions with co-occurring yellowfin (Thunnus albacares) and albacore (T. alalunga) tunas in the Southern New England region of the western North Atlantic Ocean. Fish caught by recreational anglers in offshore waters of Massachusetts were sampled during the summers of 2007–2010. Diet analysis revealed that shortfin squid (Illex illecebrosus) and small pelagic crustaceans were principal prey to dolphinfish, yellowfin tuna, and albacore tuna. A wide variety of Sargassum-associated fishes were also important to dolphinfish and yellowfin tuna diets. Dietary (Schoener’s index: 0.82–0.86) and isotopic niche (isotopic ellipse overlap: 53.6–64.7 %) overlap was high, and dolphinfish and tunas occupied equivalent trophic positions (TP = 3.4–3.6). Relative prey size in dolphinfish and yellowfin tuna diets exhibited convergence with ontogeny. Overall, dolphinfish had the greatest isotopic niche width, which was twice as large as yellowfin tuna and three times as large as albacore tuna; dolphinfish also consumed the greatest range of prey sizes. Results quantify dolphinfish trophic interactions in the western Atlantic near the northern extent of their geographical range, and are relevant for ecosystem-based management of the offshore pelagic guild in the context of shifting fish populations and fisheries in response to climate and ecological change.  相似文献   

12.
During chick-rearing, albatrosses can alternate between long foraging trips that provide the main source of food for the adults and short foraging trips that they use to feed their young. This flexibility in foraging behaviour can lead to differences in diet composition between adults and chicks and implies that they may be vulnerable in different ways to food shortages. The trophic ecology of the Grey-headed albatross Thalassarche chrysostoma was investigated at the sub-Antarctic Prince Edward Islands during the chick-rearing period in April 2006 using a combination of approaches. Diets of adults and chicks were assessed using stable isotope ratios and fatty acid (FA) profiles of blood and/or stomach oils, in addition to stomach contents analysis. Fish from the family Macrouridae and cephalopods (particularly the onychoteuthid Kondakovia longimana) were the primary prey, whereas crustaceans (krill Euphausia superba) represented a smaller proportion of the stomach contents. Stomach oil FA profiles contained more monounsaturated FA than the profiles of plasma, which were richer in saturated FA and arachidonic acid (20:4n-6). There was also a distinct separation of adults from chicks, with higher levels of monounsaturates in chick plasma, and higher saturated FA levels (particularly 16:0) in the adult plasma. Stable carbon isotope ratios of whole blood were similar in adults and chicks, whereas stable nitrogen isotope ratios showed significant enrichment by >1‰ in chicks. The combined FA, stable isotopes and stomach contents analyses suggest clear differences in diet quality between adults and chicks, with chicks feeding at a higher trophic position through feeding more on highly nutritious fish and adults keeping much of the less nutritious zooplankton for themselves.  相似文献   

13.
The genetic population structures of Atlantic northern bluefin tuna ( Thunnus thynnus thynnus) and albacore ( T. alalunga) were examined using allozyme analysis. A total of 822 Atlantic northern bluefin tuna from 18 different samples (16 Mediterranean, 1 East Atlantic, 1 West Atlantic) and 188 albacore from 5 samples (4 Mediterranean, 1 East Atlantic) were surveyed for genetic variation in 37 loci. Polymorphism and heterozygosity reveal a moderate level of genetic variability, with only two highly polymorphic loci in both Atlantic northern bluefin tuna ( FH* and SOD- 1*) and albacore ( GPI- 3* and XDH*). The level of population differentiation found for Atlantic northern bluefin tuna and albacore fits the pattern that has generally been observed in tunas, with genetic differences on a broad rather than a more local scale. For Atlantic northern bluefin tuna, no spatial or temporal genetic heterogeneity was observed within the Mediterranean Sea or between the East Atlantic and Mediterranean, indicating the existence of a single genetic grouping on the eastern side of the Atlantic Ocean. Very limited genetic differentiation was found between West Atlantic and East Atlantic/Mediterranean northern bluefin tuna, mainly due to an inversion of SOD- 1* allele frequencies. Regarding albacore, no genetic heterogeneity was observed within the Mediterranean Sea or between Mediterranean and Azores samples, suggesting the existence of a single gene pool in this area.  相似文献   

14.
Adult Vinciguerria nimbaria are the main prey of tuna during the tuna fishing season (late autumn and winter) in the equatorial Atlantic (0–4°N, and ~15°W). V. nimbaria trophic behavior in the fishing grounds was studied in relation to hydrobiological factors to determine its role in the trophic food web. Sampling stations spaced by 20 nautical miles were set up along a 15°W north–south transect from 4°N to 0°40S. At each station, the temperature and vertical fluorescence profiles were recorded. Nitrate and chlorophyll a analyses were performed on water sampled at different levels in the euphotic zone. Vertical plankton hauls were carried out at depths of 0–100 and 0–200 m using a standard WP2 net fitted with a 200-μm mesh gauze. Vinciguerria nimbaria adults were collected using a young-fish mid-water trawl net (10 × 15 m opening mouth, 10 mm cod end mesh). The weight of the stomach contents, the stomach fullness index, the number of prey, the frequency of occurrence and the prey preponderance were recorded for 20 fish from each haul. An oligotrophic typical tropical structure (TTS) was found between 1° and 4°N where small zooplankton was relatively abundant above or near the thermocline. In the TTS, V. nimbaria behaved as an epipelagic fish, feeding on the dominant small prey during the daytime. In turn, it was a prey for tuna. In the equatorial zone, where zooplankton was more abundant than in the north equatorial zone, V. nimbaria behaved as a mesopelagic fish and as an opportunistic mesozooplankton feeder. It consumed a wide range of sizes of food, feeding on the most abundant species of zooplankton as well as the largest zooplankton species, possibly while migrating towards the surface in the late afternoon or in the deep layer.  相似文献   

15.
Many species of marine organisms go through ontogenetic shifts that occur in unknown or inaccessible locations. Finding these areas is crucial to understand connectivity and resilience of populations, both of which have conservation implications. When extrinsic markers are not suitable to track organisms, intrinsic markers can be useful to infer the location of inaccessible areas where these cryptic stages occur. Our study focuses on the location of oceanic foraging areas of the cryptic early juvenile stage of green turtles, Chelonia mydas, in the Atlantic. Due to the small size of hatchlings, the use of telemetry is limited to short periods of time and small spatial ranges, which do not allow determining the location of oceanic foraging areas. We used lead (Pb) stable isotopes to determine the possible location of oceanic foraging areas of small green turtles in the Atlantic Ocean. Pb stable isotope ratios in the scute tissue deposited when turtles were in the oceanic habitat were compared to ratios of major sources of lead in the Atlantic and oceanic areas in the Atlantic to determine the location of oceanic foraging grounds. The Pb isotope ratios in the scute of oceanic-stage green turtles indicated that turtles use different regions in the Atlantic and that they are capable of transatlantic migrations. We compare the oceanic locations identified by this study with those suggested by two previous studies.  相似文献   

16.
Increasing concerns about the ecological impacts of ongoing and possibly worsening blooms of the toxic, carcinogenic cyanobacteria Lyngbya majuscula in Moreton Bay, Australia, led us to assess differences in meiofaunal prey assemblages between bloom and non-bloom substrates and the potential dietary impacts of dense L. majuscula blooms on the omnivorous benthivore, the Eastern Long-finned Goby, Favonigobius lentiginosus and the obligate meiobenthivorous juveniles of Trumpeter Whiting, Sillago maculata. Marked differences in invertebrate communities were found between sandy and L. majuscula bloom foraging substrates, with copepods significantly more abundant (18.49% vs. 70.44% numerical abundance) and nematodes significantly less abundant (55.91% vs. 1.21% numerical abundance) within bloom material. Gut analyses showed that bentho-planktivorous fishes exposed to L. majuscula in captivity had consumed a significantly greater quantity of prey by both total number (P < 0.0019) and volume (P < 0.0006) than fish exposed to sand treatments. Thus, it is likely for such fishes that L. majuscula blooms increase rates of prey encounter and consumption, with consequent changes in trophic relationships through shifts in predator–prey interactions between small benthivorous fishes and their meiofaunal prey.  相似文献   

17.
Pop-up satellite archival tags were implanted into 68 Atlantic bluefin tuna (Thunnus thynnus Linnaeus), ranging in size from 91 to 295 kg, in the southern Gulf of Maine (n=67) and off the coast of North Carolina (n=1) between July 2002 and January 2003. Individuals tagged in the Gulf of Maine left that area in late fall and overwintered in northern shelf waters, off the coasts of Virginia and North Carolina, or in offshore waters of the northwestern Atlantic Ocean. In spring, the fish moved either northwards towards the Gulf of Maine or offshore. None of the fish crossed the 45°W management line (separating eastern and western management units) and none traveled towards the Gulf of Mexico or the Straits of Florida (known western Atlantic spawning grounds). The greatest depth recorded was 672 m and the fish experienced temperatures ranging from 3.4 to 28.7°C. Swimming depth was significantly correlated with location, season, size class, time of day, and moon phase. There was also evidence of synchronous vertical behavior and changes in depth distribution in relation to oceanographic features.Communicated by J.P. Grassle, New Brunswick  相似文献   

18.
Leatherback turtles, Dermochelys coriacea, are highly migratory, spending most of their lives submerged or offshore where their feeding habits are difficult to observe. In order to elucidate the foraging ecology of leatherbacks off Massachusetts, USA, stable isotope analyses were performed on leatherback tissues and prey collected from 2005 to 2009. Stable isotope ratios of nitrogen and carbon were determined in whole blood, red blood cells, blood plasma, muscle, liver, and skin from adult male, female, and subadult leatherbacks. Isotopic values were analyzed by body size (curved carapace length) and grouped by sex, and groups were tested for dietary differences. Gelatinous zooplankton samples were collected from leatherback foraging grounds using surface dip nets and stratified net tows, and prey contribution to leatherback diet was estimated using a two-isotope Bayesian mixing model. Skin and whole blood δ13C values and red blood cell δ15N values were correlated with body size, while δ13C values of red blood cells, whole blood, and blood plasma differed by sex. Mixing model results suggest that leatherbacks foraging off Massachusetts primarily consume the scyphozoan jellyfishes, Cyanea capillata and Chrysaora quinquecirrha, and ctenophores, while a smaller proportion of their diet comes from holoplanktonic salps and sea butterflies (Cymbuliidae). Our results are consistent with historical observations of leatherback turtles feeding on scyphozoan prey in this region and offer new insight into size- and sex-related differences in leatherback diet.  相似文献   

19.
Scott A. Eckert 《Marine Biology》2006,149(5):1257-1267
The movements and behavior of nine female leatherback sea turtles, Dermochelys coriacea (L.) were monitored for up to 370 days from their nesting beaches on the Caribbean island of Trinidad between 1995 and 2004 using satellite-linked time and depth recorders. During the inter-nesting period (typically March–July) turtles ranged widely, but frequented the area around Galera Point on the NE corner of Trinidad. Diving depths were typically <51 m. Upon leaving Trinidad, the three longest tracked turtles moved to higher latitude foraging areas, NE of the Flemish Cap; along the continental shelf of the Iberian peninsula to the Bay of Biscay; and along the N. Atlantic subtropical front, where they remained until the end of November. Dives were initially deep (100–300 m) and long (>26 min) as the turtles left the Caribbean, but became very shallow (>50 m) and short at high latitudes. Between mid-October and mid-November, the turtles left high latitudes for a presumed foraging area in the Mauritania upwelling where they resided until their tracking records ended. Diving remained relatively shallow. It is proposed that movements of these turtles from one foraging area to another are driven by the opportunity to forage in areas of distinct oceanic structure which serve to concentrate their gelatinous prey (e.g., salps, Scyphomedusae, Siphonophora) either at or below the surface.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

20.
The geographic distribution ofCyclope neritea (Linné) (Mollusca: Gastropoda) along the Atlantic coasts of Portugal, Spain and France is reported. Analysis of information published over the last 90 yr indicates that, since 1983,C. neritea has extended its range northwards from Arcachon Bay along the coast of the Bay of Biscay. The spread of this small gastropod is directly related to the commercial transport of the Pacific cup oyster (Crassostrea gigas Thunberg) to the Atlantic from Mediterranean oyster-culture sites, and to its encountering climatic conditions suitable for its settlement and reproduction in its new habitat. Its transport by human intervention explains the rapid spread ofCyclope neritea during 1983 and 1984, despite its lack of a planktonic stage or of effective natural migration by adults. Climatic conditions in the southern parts of the Bay of Biscay are similar to those of the French Mediterranean lagoons, explaining the easy acclimatization of this eurythermic gastropod. Also, coastal air and sea-surface temperature records over the last two decades (1971–1988) have revealed a slight warming of the southern parts of the Bay of Biscay. This has resulted in a more strongly marked latitudinal thermal gradient along the Bay of Biscay and has furthered survival and reproduction ofCyclope neritea emigrants. A detailed analysis of commercial supplies of cup oysters to the Bay of Biscay from the Mediterranean coast indicates that theC. neritea emigrants undoubtedly originated from the salt-water lagoons of Salse-Leucate and Thau (French Mediterranean coast).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号