首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
The effect of ozone (O3) on growth, yield and foliar antioxidants of spring wheat (Triticum aestivum L. cv. Turbo) was investigated in 1990 and 1991 in Braunschweig, Germany. Plants were grown full-season in pots in open-top chambers ventilated with charcoal-filtered (CF) air to which one or two levels of O3 were added. Mean 8 h day(-1) (10.00-18.00 h) O3 concentrations in the CF and CF + O3 treatments were 5.9, 61.2 and 92.5 nl litre(-1) in 1990, and 4.7 and 86.4 nl litre(-1) in 1991. Plants that received the high O3 level showed symptoms of premature senescence of the oldest leaves and yield reductions in both growing seasons. The contents of ascorbate and glutathione and the enzyme activities of ascorbate peroxidase and glutathione reductase were measured in symptomless flag leaves in weekly intervals before and after the beginning of anthesis. Leaf age had a significant effect on all antioxidants investigated. The O3 exposures of about 90 nl litre(-1) increased the activity of ascorbate peroxidase and the concentration of glutathione, but there were no pollutant effects on ascorbate content and glutathione reductase activity. Measurements of the antioxidant levels throughout one day showed no clear indications of diurnal changes in the antioxidative capacity in wheat flag leaves. The results are discussed in relation to the role of antioxidants in O3 detoxification.  相似文献   

2.
The toxicity of metal oxides (CdO, ZnO, PbO) were compared with each other and the critical levels of metal uptake by rice plants were determined. The order of metal toxicity to rice plants is CdO greater than ZnO greater than PbO. The highest concentration obtained for unpolished rice was 4.97 micrograms/g at the Cd 10,000 ppm in soil. This values is higher than every other we have seen in the reports for treatment with CdO. We are able to find out that the concentration of 10,000 ppm Cd in the form of CdO in the critical one towards rice plant. By contrast, such damage was not observed at even higher levels of ZnO and PbO were considered to have low toxicity toward rice plant. Also, a negative correlation between Zn or Cu accumulation in rice plants and Cd concentration in soil was found.  相似文献   

3.
《Chemosphere》1986,15(6):787-793
The first natural abundance 13C NMR investigation of a complex mixture of conjugate metabolites obtained from the gall bladder bile of fish exposed to hydrocarbons is presented. Cunners were exposed to water accommodated No. 2 fuel oil containing about 68% saturates and 22% aromatics. Spectral analysis indicated that the hydrocarbon derivatives were present predominantly as β-glucuronides, with the oxygen at carbon-1 of glucuronic acid preferentially attached to an aliphatic carbon. The conjugate metabolites were enriched in aromatic-type carbons when compared to the fuel oil or the aromatic fraction of oil.  相似文献   

4.
The effect of ozone (< 10, 200 or 400 microg m(-3) on hexane- and dichloromethane-soluble components of Picea abies needles was determined by fumigating potted grafts from mature trees. The trees (>55 and 125 years, 2.5 m high), representing six clones of Norway spruce, were fumigated in open-top chambers at two locations in Norway for one growth season. The needles were extracted with hexane and dichloromethane; 142 compounds from the hexane extract and 164 silylated compounds from the dichloromethane extract were analysed by gas chromatography although no identifications were made. The concentration of four of the compounds from the hexane extract changed with ozone dose in a way that made them promising as indicators, but the present analytical method could not verify this possibility. None of the other 302 compounds qualified as a general indicator of ozone stress in Norway spruce, as none changed its concentration with ozone dose consistently in all romets of all clones. Most of the variation in the experiment is mainly attributable to genetic variation and to climate.  相似文献   

5.
Single Scots pine (Pinus sylvestris L.) trees, aged 30 years, were grown in open-top chambers and exposed to two atmospheric concentrations of ozone (O3; ambient and elevation) and carbon dioxide (CO2) as single variables or in combination for 3 years (1994-1996). Needle growth, respiration and nitrogen content were measured simultaneously over the period of needle expansion. Compared to ambient treatment (33 nmol mol(-1) O3 and 350 micromol mol(-1) CO2) doubled ambient O3 (69 nmol mol(-1)) significantly reduced the specific growth rates (SGRs) of the needles in the early stage of needle expansion and needle nitrogen concentration (N1) in the late stage, but increased apparent respiration rates (ARRs) in the late stage. Doubled ambient CO2 (about 650 micromol mol(-1)) significantly increased maximum SGR but reduced ARR and N1 in the late stage of needle expansion. The changes in ARR induced by the different treatments may be associated with treatment-induced changes in needle growth, metabolic activities and turnover of nitrogenous compounds. When ARR was partitioned into its two functional components, growth and maintenance respiration, the results showed that neither doubled ambient O3 nor doubled ambient CO2 influenced the growth respiration coefficients (Rg). However, doubled ambient O3 significantly increased the maintenance respiration coefficients (Rm) regardless of the needle development stage, while doubled ambient CO2 significantly reduced Rm only in the late stage of needle expansion. The increase in Rm under doubled ambient O3 conditions appeared to be related to an increase in metabolic activities, whereas the decrease in Rm under doubled ambient CO2 conditions may be attributed to the reduced N1 and turnover rate of nitrogenous compounds per unit. The combination of elevated O3 and CO2 had very similar effects on growth, respiration and N1 to doubled ambient O3 alone, but the interactive mechanism of the two gases is still not clear.  相似文献   

6.
Hourly measurements of baseline ozone at the Mace Head Atmospheric Research Station on the Atlantic Ocean coast of Ireland are observed when unpolluted air masses are advected to the station from across the North Atlantic Ocean. Monthly mean ozone mixing ratios in baseline air masses have risen steadily during the 1980s and 1990s reaching unprecedented levels during the early months of 1999. During the 2000s, baseline ozone mixing ratios have shown evidence of decline and stabilisation. Over the entire 20-year 1987–2007 period, the trend in annual baseline ozone has been +0.31±0.12(2−σ) ppb year−1 and is highly statistically significant. Trends have been highest in the spring months and lowest in the summer months, producing a significant increase in the amplitude of the seasonal cycle. Over the shorter 1995–2007 period, we demonstrate how the growth to peak in 1999 and the subsequent decline have been driven by boreal biomass burning events during 1998/1999 and 2002/2003. The 2000s have been characterised by relatively constant baseline ozone and CH4 levels and these may be a reasonable guide to future prospects, at least in the short term.  相似文献   

7.
This paper summarises some of the main results of a two-year experiment carried out in an Open-Top Chambers facility in Northern Italy. Seedlings of Populus nigra, Fagus sylvatica, Quercus robur and Fraxinus excelsior have been subjected to different ozone treatments (charcoal-filtered and non-filtered air) and soil moisture regimes (irrigated and non-irrigated plots). Stomatal conductance models were applied and parameterised under South Alpine environmental conditions and stomatal ozone fluxes have been calculated.The flux-based approach provided a better performance than AOT40 in predicting the onset of foliar visible injuries. Critical flux levels, related to visible leaf injury, are proposed for P. nigra and F. sylvatica (ranging between 30 and 33 mmol O3 m−2). Soil water stress delayed visible injury appearance and development by limiting ozone uptake. Data from charcoal-filtered treatments suggest the existence of an hourly flux threshold, below which may occur a complete ozone detoxification.  相似文献   

8.
Environmental Science and Pollution Research - Continuous flooding has been widely used in paddy field to decrease the accumulation of heavy metal(loid)s by rice due to their decreased solubility...  相似文献   

9.
Particulate matter < or =10 microm (PM10) emissions due to wind erosion can vary dramatically with changing surface conditions. Crust formation, mechanical disturbance, soil texture, moisture, and chemical content of the soil can affect the amount of dust emitted during a wind event. A refined method of quantifying windblown dust emissions was applied at Mono Lake, CA, to account for changing surface conditions. This method used a combination of real-time sand flux monitoring, ambient PM10 monitoring, and dispersion modeling to estimate dust emissions and their downwind impact. The method identified periods with high emissions and periods when the surface was stable (no sand flux), even though winds may have been high. A network of 25 Cox sand catchers (CSCs) was used to measure the mass of saltating particles to estimate sand flux rates across a 2-km2 area. Two electronic sensors (Sensits) were used to time-resolve the CSC sand mass to estimate hourly sand flux rates, and a perimeter tapered element oscillating microbalance (TEOM) monitor measured hourly PM10 concentrations. Hourly sand flux rates were related by dispersion modeling to hourly PM10 concentrations to back-calculate the ratio of vertical PM10 flux to horizontal sand flux (K-factors). Geometric mean K-factor values (K(f)) were found to change seasonally, ranging from 1.3 x 10(-5) to 5.1 x 10(-5) for sand flux measured at 15 cm above the surface (q15). Hourly PM10 emissions, F, were calculated by applying seasonal K-factors to sand flux measurements (F = K(f) x q15). The maximum hourly PM10 emission rate from the study area was 76 g/m2 x hr (10-m wind speed = 23.5 m/sec). Maximum daily PM10 emissions were estimated at 450 g/m2 x day, and annual emissions at 1095 g/m2 x yr. Hourly PM10 emissions were used by the U.S. Environmental Protection Agency (EPA) guideline AERMOD dispersion model to estimate downwind ambient impacts. Model predictions compared well with monitor concentrations, with hourly PM10 ranging from 16 to over 60,000 microg/m3 (slope = 0.89, R2 = 0.77).  相似文献   

10.
Euphorbia lathyris L., was treated for 24 h. with 0.1, 1 and 10 ppm chlortoluron. The induction kinetic of the fluorescence on the whole leaf was registered during the following 15 days. A recovery of E. lathyris seedlings and an accumulation of chlortoluron in leaves was observed. The fluorescence levels obtained on the leaves emerged after the treatments were similar to the one observed on the control plants. This explains the detoxification mechanism as an accumulation of chlortoluron in the leaves present during the treatment.  相似文献   

11.
As part of a study of the phytotoxic risk of spreading contaminated sediments "on soil", a laboratory experiment was carried out to assess the impact of water draining from sediments on peripheral vegetation. Drainage water was obtained in the laboratory by settling three sediments with different pollutants levels, and the supernatant solutions (respectively A1, B1, C1 drainage waters) were used as soaking water for maize (Zea ma?s L.) and ryegrass (Lolium perenne L.). The physicochemical characteristics of the supernatant water, particularly metal contents, showed a pattern of contamination, with C1>A1>B1. The plants tested were grown on soil for 21 days, before being soaked for another 21-day period with drainage water (treatments) and distilled water (control). Biomass parameters (fresh weight, length, etc.), enzymatic activity [glutamine synthetase (GS), phosphoenolpyruvate carboxylase (PEPc)] and Zn, Cu, Cd and Cr contents were measured on both the shoots and roots of each plant. Biomass parameters were stimulated by C1, not affected by A1 and decreased with B1 for maize, whereas they increased for ryegrass in all the treatments. Compared to the control, GS activity was stimulated by C1 in the shoots of both plants and inhibited by treatments B1 and C1 in maize roots. PEPc activity in ryegrass was 1.5-5 times higher with contaminated water treatment, while contrasting effects were observed in maize plants. Both plants showed greater accumulation of chromium and zinc than cadmium and copper. Treatment A1 was found to be less active on plant growth and have a lower impact on the physiological status (enzymatic activities) of both plants. Treatment C1 stimulated the growth and physiological status of the plants, especially in shoots, with higher metal accumulation values in both plants. Treatment B1 was found to show more variable effects on growth indices, enzymatic activity and metal accumulation according to plant species.  相似文献   

12.
Elevated concentrations of ground-level ozone (O3) are frequently measured over farmland regions in many parts of the world. While numerous experimental studies show that O3 can significantly decrease crop productivity, independent verifications of yield losses at current ambient O3 concentrations in rural locations are sparse. In this study, soybean crop yield data during a 5-year period over the Midwest of the United States were combined with ground and satellite O3 measurements to provide evidence that yield losses on the order of 10% could be estimated through the use of a multiple linear regression model. Yield loss trends based on both conventional ground-based instrumentation and satellite-derived tropospheric O3 measurements were statistically significant and were consistent with results obtained from open-top chamber experiments and an open-air experimental facility (SoyFACE, Soybean Free Air Concentration Enrichment) in central Illinois. Our analysis suggests that such losses are a relatively new phenomenon due to the increase in background tropospheric O3 levels over recent decades. Extrapolation of these findings supports previous studies that estimate the global economic loss to the farming community of more than $10 billion annually.  相似文献   

13.
The effects of water-extractable organic matter (WEOM) from compost-like materials on peroxidative stress were investigated for hydroponic culture of barley exposed to Cd. In the presence of WEOM, lipoxygenase activity and malondialdehyde, indices of peroxidative stress in barley, were significantly reduced, compared to those with Cd alone (5 μM) for a 30-d culture (p < 0.05). In addition, Cd uptake in the presence of WEOM samples was significantly lower than that in their absence (p < 0.05). These results indicate that the addition of WEOM can be effective in mitigating the peroxidative stress in barley exposed to Cd. Of the total Cd in the solution, 7–8% was complexed with WEOM, indicating that the complexation of Cd with WEOM is a minor factor in reducing Cd-induced stress in barley. The WEOM sample was purified by cation-exchange column and ultrafiltration to remove the nutrient minerals, such as Ca, Mg and Fe. When the purified WEOM was employed for hydroponic culture in the presence of Cd, significant decreases in peroxidative stress and Cd uptake were observed (p < 0.05). These results show that the organic components in WEOM contribute to the mitigation of peroxidative stress in barley exposed to Cd.  相似文献   

14.
Rice is a major food crop throughout the world; however, accumulation of toxic metals and metalloids in grains in contaminated environments is a matter of growing concern. Field experiments were conducted to analyze the growth performance, elemental composition (Fe, Si, Zn, Mn, Cu, Ni, Cd and As) and yield of the rice plants (Oryza sativa L. cv. Saryu-52) grown under different doses of fly-ash (FA; applied @ 10 and 100 tha(-1) denoted as FA(10) and FA(100), respectively) mixed with garden soil (GS) in combination with nitrogen fertilizer (NF; applied @ 90 and 120 kg ha(-1) denoted as NF(90) and NF(120), respectively) and blue green algae biofertilizer (BGA; applied @ 12.5 kg ha(-1) denoted as BGA(12.5)). Significant enhancement of growth was observed in the plants growing on amended soils as compared to GS and best response was obtained in amendment of FA(10)+NF(90)+BGA(12.5). Accumulation of Si, Fe, Zn and Mn was higher than Cu, Cd, Ni and As. Arsenic accumulation was detected only in FA(100) and its amendments. Inoculation of BGA(12.5) caused slight reduction in Cd, Ni and As content of plants as compared to NF(120) amendment. The high levels of stress inducible non-protein thiols (NP-SH) and cysteine in FA(100) were decreased by application of NF and BGA indicating stress amelioration. Study suggests integrated use of FA, BGA and NF for improved growth, yield and mineral composition of the rice plants besides reducing the high demand of nitrogen fertilizers.  相似文献   

15.
The Positive Matrix Factorization (PMF) receptor model and the Observation Based Model (OBM) were combined to analyze volatile organic compound (VOC) data collected at a suburban site (WQS) in the PRD region. The purposes are to estimate the VOC source apportionment and investigate the contributions of these sources and species of these sources to the O3 formation in PRD. Ten VOC sources were identified. We further applied the PMF-extracted concentrations of these 10 sources into the OBM and found "solvent usage 1", "diesel vehicular emissions" and "biomass/biofuel burning" contributed most to the O3 formation at WQS. Among these three sources, higher Relative Incremental Reactivity (RIR)-weighted values of ethene, toluene and m/p-xylene indicated that they were mainly responsible for local O3 formation in the region. Sensitivity analysis revealed that the sources of "diesel vehicular emissions", "biomass/biofuel burning" and "solvent usage 1" had low uncertainties whereas "gasoline evaporation" showed the highest uncertainty.  相似文献   

16.
Chichi-jima island is located in the Pacific about 1000 km from the Japanese main island and is an ideal remote observatory from which to assess the long-range transport of polluted air from East Asia. The ozone concentration was measured from August 1997 to August 1998. Owing to the air mass change, the seasonal variation of ozone shows a distinct character: low concentration (about 13 ppbv) for the maritime air mass during the summer, and high concentration (about 40 ppbv) for the continental air mass during the winter. To assess the contribution of the long-range transport of polluted air during winter, nonmethane hydrocarbons were also measured in December 1999. Using backward trajectory analysis, the transport time of the air mass from the source area in the Pacific rim region was calculated for each sample. The concentration of hydrocarbons shows a clear negative correlation against the transport time. This analysis clearly shows the transport of polluted air, emitted in East Asia, to the Pacific during the winter. The plots of suitable hydrocarbon pairs showed that the decrease of hydrocarbon concentrations during winter is mainly caused by the mixing with clean background air.  相似文献   

17.
Ameliorative effects of ethylenediurea (N-[2-(2-oxo-1-imidazolinidyl) ethyl]-N′ phenylurea, abbreviated as EDU) against ozone stress were studied on selected growth, biochemical, physiological and yield characteristics of palak (Beta vulgaris L. var Allgreen) plants grown in field at a suburban site of Varanasi, India. Mean eight hourly ozone concentration varied from 52 to 73 ppb which was found to produce adverse impacts on plant functioning and growth characteristics. The palak plants were treated with 300 ppm EDU at 10 days after germination at 10 days interval up to the plant maturity. Lipid peroxidation in EDU treated plants declined significantly as compared to non-EDU treated ones. Significant increment in Fv/Fm ratio in EDU treated plants as compared to non-EDU treated ones was recorded. EDU treated plants showed significant increment in ascorbic acid contents and reduction in peroxidase activity as compared to non-EDU treated ones. As a result of the protection provided by EDU against ozone induced stress on biochemical and physiological characteristics of palak, the morphological parameters also responded positively. Significant increments were recorded in shoot length, number of leaves plant−1, leaf area and root and shoot biomass of EDU treated plants as compared to non-EDU treated ones. Contents of Na, K, Ca, Mg and Fe were higher in EDU treated plants as compared to non-EDU treated ones. The present investigation proves the usefulness of EDU in partially ameliorating ozone injury in ambient conditions.  相似文献   

18.
Historical records preserved in sediments show that the lakes are extremely sensitive to metal emissions from the smelters in the Sudbury basin. From the observed quick response, a strong capacity for rapid recovery (deacidification) of acid-stressed lakes in the area is deduced. The study thus emphasises the need for curtailing the emissions of acidic and acidifying substances as a critical step in reducing lake acidification as well as in rehabilitating many of the afflicted lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号