首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
INTRODUCTION: Endocrine disrupting chemicals (EDCs) are present in the environment and can have serious effects on humans and wildlife. For the establishment of environmental quality guidelines and regulation of EDCs, a better understanding and knowledge of the occurrence and the behavior of environmental EDCs is necessary. The aim of the present study was to comprehensively identify substances that are responsible for the estrogenic effect of an environmental sediment sample taken from the river Elbe/Germany. DISCUSSION: The estrogenic effect of the organic sediment extract was determined using the yeast-estrogen-screen (YES). The sample was fractionated by liquid chromatography (LC) for effect directed analysis. The composition of estrogen-active fractions was further investigated by gas chromatography-mass spectrometry and high-resolution LC-MS analysis. The composition of the environmental sample was rebuilt with pure compounds in order to assess the partition of estrogenic activity caused by the identified compounds. The organic sediment extract showed an estrogenic potential of 1.9?±?0.4 ng/g ethinylestradiol equivalents in the sediment. The most prominent contaminants with an estrogenic potential were 17β-estradiol, estrone, and 4-iso-nonylphenols, but other xenoestrogens like bisphenol A and stigmasterol could be found as well. A rebuild of the sample was measured in the YES in order to investigate mixture effects. About 67 % of the observed estrogenic effect in the sediment extract could be explained by a mixture which contained all identified compounds. Chlorophene (o-benzyl-p-chlorophenol)-a widely used antiseptic that was also identified in the sediment extract-has xenoestrogenic properties in the YES that are in the range of other xenoestrogens like 4-n-nonylphenol. This is the first report on chlorophene acting as a xenoestrogen.  相似文献   

2.
As part of endocrine disruption in catchments (EDCAT) programme, this work aims to assess the temporal and spatial variations of endocrine disrupting chemicals (EDCs) in River Ray, before and after the commissioning of a full-scale granular activated carbon (GAC) plant at a sewage treatment works (STW). Through spot and passive sampling from effluent and river sites, estrogenic and anti-androgenic activities were determined by chemical analysis and in vitro bio-assay. A correlation was found between chemical analyses of the most potent estrogens (estrone (E1), 17β-estradiol (E2), 17α-ethinylestradiol (EE2)) and yeast estrogen screen (YES) measurement, both showing clearly a reduction in estrogenic activity after the commissioning of the GAC plant at the STW. During the study period, the annual average concentrations of E1, E2 and EE2 had decreased from 3.5 ng L−1, 3.1 ng L−1 and 0.5 ng L−1 to below their limit of detection (LOD), respectively, with a concentration reduction of at least 91%, 81% and 60%. Annual mean estrogenic activity measured by YES of spot samples varied from 1.9 ng L−1 to 0.4 ng L−1 E2 equivalent between 2006 and 2008 representing a 79% reduction. Similarly, anti-androgenic activity measured by yeast anti-androgen screen (anti-YAS) of spot samples was reduced from 148.8 to 22.4 μg flutamide L−1, or by 85%. YES and anti-YAS values were related to each other, suggesting co-existence of both types of activities from chemical mixtures in environmental samples. The findings confirm the effectiveness of a full-scale GAC in removing both estrogenic and anti-androgenic activities from sewage effluent.  相似文献   

3.
4.
The estrogenic activities of source water from Yangtze River, Huaihe River, Taihu Lake and groundwater in Yangtze River Delta in the dry and wet season were determined by use of reporter gene assays based on African green monkey kidney (CV-1) cell lines. Higher estrogenic activities were observed in the dry season, and the estrogenic potentials in water samples from Taihu Lake were greater than other river basins. None of the samples from groundwater showed estrogen receptor (ER) agonist activity. The 17β-Estradiol (E2) equivalents (EEQs) of water samples in the dry season ranged from 9.41 × 10?1 to 1.20 × 101 ng E2 L?1. In the wet season, EEQs of all the water samples were below the detection limit as 9.00 × 10?1 ng E2 L?1 except for one sample from Huaihe River. The highest contribution of E2 was detected in Yangtze River as 99% of estrogenic activity. Nonylphenol (NP, 100% detection rate) and octylphenol (OP, 100% detection rate) might also be responsible for the estrogenic activities in water sources. Potential health risk induced by the estrogenic chemicals in source water may be posed to the residents through water drinking.  相似文献   

5.
Schultis T  Metzger JW 《Chemosphere》2004,57(11):1649-1655
In order to enhance the sensitivity and the speed of the yeast estrogen screen (YES)-assay, which has been established in many laboratories for the determination of estrogenic activity of compounds and environmental samples, the LYES-assay, a modified version of the YES-assay including a digestion step with the enzyme lyticase, was developed. With the LYES-assay the estrogenic activities of natural (17β-estradiol E2 and estrone), synthetic (17-ethinylestradiol EE2) and pharmaceutical estrogens (diethylstilbestrol DES) as well as xenoestrogens (4-nonylphenol NP and five parabens) were determined and compared with the results obtained by other in vitro-assays namely the conventional YES-assay, the E-Screen-assay (MCF-7 breast tumor cell proliferation) and a receptor binding-assay (RB) with human estrogen receptors hER- and hER-β. In the case of E2 the LYES-assay had a significantly lower limit of quantification (LOQ) than the conventional YES-assay and even two orders of magnitude lower than the RB-assay. Compared to the E-Screen-assay the LOQ of the LYES-assay was almost one order of magnitude higher. The time required to perform the LYES-assay was as little as seven hours compared to three to five days for the conventional YES-assay. Thus, the LYES-assay is a very good alternative to existing estrogenic in vitro-assays, since it has a good sensitivity, is cheap and much faster than the other assays.  相似文献   

6.
4-Nonylphenol (NP) has been shown to elicit estrogenic responses both in vivo and in vitro. The mechanism by which NP exerts estrogenic and other endocrine-modulating effects in vivo remains unclear, however. The goal of this study was to evaluate the ability of NP to elicit estrogenic responses through indirect mechanisms of action involving the modulation of endogenous steroid hormone concentrations. Sexually mature male common carp (Cyprinus carpio) were exposed to aqueous NP concentrations ranging from <0.05 to 5.4 microg NP/l for 28-31 d. Approximately 0.5-3.5 ppm of NP was detected in pooled plasma samples or tissue samples from the carp studied. NP exposure did not significantly increase plasma concentrations of 17beta-estradiol (E2), testosterone (T) or vitellogenin (VTG). Excluding outliers, plasma E2 concentrations ranged from <175 to 700 pg E2/ml. T concentrations ranged from 940 to 24,700 pg T/ml plasma. The greatest VTG concentration detected was 52 microg/ml. One-third of the plasma samples tested contained <1 microg VTG/ml. Overall, the results of this study did not support the hypothesis that exposure to waterborne NP can modulate concentrations of steroid hormones in the plasma of sexually mature male carp. The results did, however, raise a number of questions regarding the utility of estradiol equivalent (EEQ) estimates as a means of predicting in vivo effects of estrogenic substances. Furthermore, they provide information regarding the concentrations and variability of E2, T, and VTG in the plasma of sexually mature male carp, which may aid in design and interpretation of future studies.  相似文献   

7.
This paper investigated some selected estrogenic compounds (4-t-octylphenol: 4-t-OP; 4-nonylphenols: 4-NP; bisphenol-A: BPA; diethylstilbestrol: DES; estrone: E1; 17β-estradiol: E2; 17α-Ethinylestradiol: EE2; triclosan: TCS) and estrogenicity in the Liao River system using the combined chemical and in vitro yeast screen bioassay and assessed their ecological risks to aquatic organisms. The estrogenic compounds 4-t-OP, 4-NP, BPA, E1, E2 and TCS were detected in most of the samples, with their concentrations up to 52.1 2065.7, 755.6, 55.8, 7.4 and 81.3 ng/L in water, and up to 8.6, 558.4, 33.8, 7.9, <LOQ and 33.9 ng/g in sediment, respectively. However, DES and EE2 were not detected in the Liao River. The estrogen equivalents (EEQ) of the water and sediment samples were also measured by the bioassay. High estrogenic risks to aquatic organisms were found in the river sections of metropolitan areas and the lower reach of the river system.  相似文献   

8.
Bisphenol A (BPA) and nonylphenol (NP) were treated with manganese peroxidase (MnP) and laccase prepared from the culture of lignin-degrading fungi. Laccase in the presence of 1-hydroxybenzotriazole (HBT), the so-called laccase-mediator system, was also applied to remove the estrogenic activity. Both chemicals disappeared in the reaction mixture within a 1-h treatment with MnP but the estrogenic activities of BPA and NP still remained 40% and 60% in the reaction mixtures after a 1-h and a 3-h treatment, respectively. Extension of the treatment time to 12 h completed the removal of estrogenic activities of BPA and NP. The laccase has less ability to remove these activities than MnP, but the laccase-HBT system was able to remove the activities in 6 h. A gel permeation chromatography (GPC) analysis revealed that main reaction products of BPA and NP may be oligomers formed by the action of enzymes. Enzymatic treatments extended to 48 h did not regenerate the estrogenic activities, suggesting that the ligninolytic enzymes are effective for the removal of the estrogenic activities of BPA and NP.  相似文献   

9.
10.
11.

Background, aim and scope

Estrogenic and non-estrogenic chemicals typically co-occur in the environment. Interference by non-estrogenic chemicals may confound the assessment of the actual estrogenic activity of complex environmental samples. The aim of the present study was to investigate whether, in which way and how seriously the estrogenic activity of single estrogens and the observed and predicted joint action of estrogenic mixtures is influenced by toxic masking and synergistic modulation caused by non-estrogenic chemical confounders.

Materials and methods

The yeast estrogen screen (YES) was adapted so that toxicity and estrogenicity could be quantified simultaneously in one experimental run. Mercury, two organic solvents (dimethyl sulfoxide (DMSO) and 2,4-dinitroaniline), a surfactant (LAS-12) and the antibiotic cycloheximide were selected as toxic but non-estrogenic test chemicals. The confounding impact of selected concentrations of these toxicants on the estrogenic activity of the hormone 17ß-estradiol was determined by co-incubation experiments. In a second step, the impact of toxic masking and synergistic modulation on the predictability of the joint action of 17ß-estradiol, estrone and estriol mixtures by concentration addition was analysed.

Results

Each of the non-estrogenic chemicals reduced the apparent estrogenicity of both single estrogens and their mixtures if applied at high, toxic concentrations. Besides this common pattern, a highly substance- and concentration-dependent impact of the non-estrogenic toxicants was observable. The activity of 17ß-estradiol was still reduced in the presence of only low or non-toxic concentrations of 2,4-dinitroaniline and cycloheximide, which was not the case for mercury and DMSO. A clear synergistic modulation, i.e. an enhanced estrogenic activity, was induced by the presence of slightly toxic concentrations of LAS-12. The joint estrogenic activity of the mixture of estrogens was affected by toxic masking and synergistic modulation in direct proportion to the single estrogens, which allowed for an adequate adaptation of concentration addition and thus unaffected predictability of the joint estrogenicity in the presence of non-estrogenic confounders.

Discussion

The modified YES proved to be a reliable system for the simultaneous quantification of yeast toxicity and estrogen receptor activation. Experimental results substantiate the available evidence for toxic masking as a relevant phenomenon in estrogenicity assessment of complex environmental samples. Synergistic modulation of estrogenic activity by non-estrogenic confounders might be of lower importance. The concept of concentration addition is discussed as a valuable tool for estrogenicity assessment of complex mixtures, with deviations of the measured joint estrogenicity from predictions indicating the need for refined analyses.

Conclusions

Two major challenges are to be considered simultaneously for a reliable analysis of the estrogenic activity of complex mixtures: the identification of known and suspected estrogenic compounds in the sample as well as the substance- and effect-level-dependent confounding impact of non-estrogenic toxicants.

Recommendations and perspectives

The application of screening assays such as the YES to complex mixtures should be accompanied by measures that safeguard against false negative results which may be caused by non-estrogenic but toxic confounders. Simultaneous assessments of estrogenicity and toxicity are generally advisable.  相似文献   

12.
In order to understand the effects of estrogenic chemicals on fish reproduction, we exposed male medaka (Oryzias latipes) to a natural estrogen [17 beta-estradiol (17 beta-E2)] and three estrogenic chemicals [bisphenol-A, nonylphenol (NP) and di(2-ethylhexyl)phthalate (DEHP)]. After two weeks' exposure, one male medaka was kept together with two female medaka for spawning, and the number of eggs and hatchings were compared to those of a negative control group. The results indicated that exposure to 17 beta-E2 caused a significant decrease in the number of eggs and hatchings as compared to the negative control group at and above 3 nmol/l. Also, the highest concentrations of bisphenol-A and NP caused a decrease in the number of hatchings, but no decrease in hatchings was observed in DEHP treatments. In the treatment using these chemicals the decrease in egg numbers was not so much as in hatching numbers. When compared to other in vitro studies, concentrations observed to have adverse effects on reproduction in this study are generally lower. In addition, it was suggested that physical alterations, such as an induction of plasma vitellogenin, were caused at much lower concentrations than those at which a decline in reproductivity was actually induced.  相似文献   

13.
The large estuary that the River Po forms at its confluence into the Adriatic Sea comprises a multitude of transitional environments, including coastal lagoons. This complex system receives the nutrients transported by the River Po but also its load of chemical contaminants, which may pose a substantial (eco)toxicological risk. Despite the high ecological and economic importance of these vulnerable environments, there is a substantial lack of information on this risk. In light of the recent amendments of the European Water Framework Directive (2013/39/EU), the present study investigated the sediment contamination of six coastal lagoons of the Po delta and its effects on Manila clams (Ruditapes philippinarum), exposed in situ for 3 months. Sediment contamination and clam bioaccumulation of a wide range of chemicals, i.e. trace metals (Cd, Cr, Ni, Hg, Pb, As), polybrominated diphenyl ethers (PBDEs), alkylphenols (APs), organochlorine compounds (PCBs, DDTs), polycyclic aromatic hydrocarbons (PAHs) and organotins (TPhT, TBT), suggested a southward increase related to the riverine transports. Where the River Po influence was more direct, the concentrations of contaminants were higher, with nonylphenol and BDE-209 exceeding sediment quality guidelines. Biometric indicators suggested the influence of contamination on organism health; an inverse relationship between PBDEs in sediments and clam condition index has been found, as well as different biota-sediment accumulation factors (BSAFs) in the lagoons.  相似文献   

14.
Beck IC  Bruhn R  Gandrass J 《Chemosphere》2006,63(11):1870-1878
In the present study, the yeast estrogen screen (YES) has been used to assess the estrogenic activity in surface waters of a coastal region in the German Baltic Sea. Solid-phase extraction using the copolymer Oasis HLB followed by a clean-up on silica was carried out on approximately 50-l water samples. From the final 400 μl extract volume, 100 μl aliquots were used for the measurement of estrogenic activity and for chemical analysis, which was performed by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). From 29 samples taken during two campaigns (2003 and 2004) at five different stations 27 samples showed an estrogenic response higher than 10%. The response in the YES was expressed as measured estradiol equivalents (EEQs), which were in the range of 0.01 (Darss Peninsula) to 0.82 ng/l (Inner Wismar Bay). Samples from stations located in inner coastal waters showed higher estrogenic activities than those from outer located stations. A comparison of measured estrogenicity (YES) and calculated estrogenicity (chemical analysis) showed significant differences, probably due to the presence of anti-estrogenic compounds and/or the estrogenic activity of unknown, not identified contaminants. The main contributors to the overall estrogenic activity were synthetic and natural hormones.  相似文献   

15.
From 2010 to 2012, the Yangtze River and Hanjiang River (Wuhan section) were monitored for estrogenic activities during various water level periods. Using a recombinant yeast estrogen screen (YES) assay, 54 water samples were evaluated over the course of nine sampling campaigns. The mean 17β-estradiol equivalent (EEQ) value of raw water from the Yangtze River was 0–5.20 ng/L; and the EEQ level from the Hanjiang River was 0–3.22 ng/L. In Wuhan, drinking water treatment plants (DWTPs) using conventional treatments reduced estrogenic activities by more than 89 %. In general, water samples collected during the level period showed weaker estrogenic activities compared to those collected during the dry period. The samples collected in 2010 showed the strongest estrogenic activities of the 3-year period. The lack of correlations between estrogenic activities and selected common water quality parameters showed that estrogenic activity cannot be tied to common water quality parameters.  相似文献   

16.
Environmental estrogens are substances that imitate the effects of endogenous estrogens. Effluents from municipal wastewater treatment plants are known to contain substances with estrogenic activity including steroidal estrogens and xenoestrogens. In the current study, a combination of biological and chemical analysis was applied to determine the estrogenic activity in municipal wastewater effluents in Finland. The male three-spined stickleback (Gasterosteus aculeatus) hepatocyte assay with vitellogenin induction as an endpoint was used for the detection of estrogenic activity in solid phase extracts of wastewater effluents, and 17beta-estradiol (E2) as a positive control. The wastewater extracts and E2 were found to induce vitellogenin production. The extracts were also subjected to chromatographic fractionation and the collected fractions were assayed. The only active fraction was the one in which E2, estrone and ethynylestradiol were eluted. Its activity corresponded to the activity of the original wastewater extract. The LC-MS/MS analyses of the wastewater extracts showed that the concentration of estrone was about 65 ng L(-1), the concentration of E2 was less than 1 ng L(-1), while estriol and 17alpha-ethynylestradiol could not be detected. These findings showed that the activity of the wastewater extracts and the chromatographic fraction was much higher than the activity which could have been expected on the base of the chemical analysis. This strongly indicates that other compounds, possibly acting by additivity or synergism, are playing a major role in the induced vitellogenin production by the hepatocytes.  相似文献   

17.
Zhao Z  Fang Y  Love NG  Knowlton KF 《Chemosphere》2009,74(4):551-555
Wastes generated by animal agriculture have complex matrices and present a significant challenge for achieving accurate measurements of estrogens. The objective of this study was to compare two different extraction methods and two different biochemical and biological estrogen assays on two dairy manure matrices. The two extraction methods studied in this research were a two-step base-toluene extraction and a one-step cyclohexane extraction. The two assays assessed were an enzyme-linked immunosorbent assay (ELISA) and a yeast estrogen screen (YES) bioassay. Estrogenic activity was measured directly as 17beta-estradiol (E2) through the ELISA method or as E2 equivalents (E2-eq) through the YES bioassay. Both extraction methods yielded reasonable recoveries from distilled water in the absence of matrix interferences. In manure samples, ELISA resulted in recoveries slightly higher than 100% in two types of dairy manures, but YES recoveries varied. The YES bioassay detected much higher estrogenic activities in dairy manure compared to the E2 concentrations measured by ELISA. The base-solvent extraction yielded higher E2 concentrations in dairy manure compared to the one-step cyclohexane extraction. These results suggest that manure matrices vary sufficiently that extraction methods must be optimized for specific assays utilized to quantify estrogens in manures.  相似文献   

18.
Zuo Y  Zhang K  Deng Y 《Chemosphere》2006,63(9):1583-1590
17alpha-Ethinylestradiol (EE2), a major constituent of common contraceptive pills, and three other estrogenic hormones, estrone (E1), 17beta-estradiol (E2) and mestranol (MeEE2) have been determined in Acushnet River Estuary seawater using a GC-MS technique. Among three estrogenic compounds detected, EE2 has the highest concentration, up to 4.7 ng/l, at which EE2 may affect lobster and other fish abundance in the coastal seawater due to its high biological activity on fish feminization. Two natural estrogenic hormones, E1 and E2 have also been found in the estuary at concentrations up to 1.2 ng/l and 0.83 ng/l, respectively. Although EE2 is persistent to microbial degradation, it can undergo a rapid photodegradation in estuarine seawater under natural sunlight irradiation, with a half-life of less than 1.5 days in spring sunny days.  相似文献   

19.
The objectives of this study are to track the occurrence, distribution, and sources of phenolic endocrine disrupting compounds (EDCs) in the 22 rivers around Dianchi Lake in China, to estimate the input and output amounts of phenolic EDCs in the water system, and to provide more comprehensive fundamental data for risk assessment and contamination control of phenolic EDCs in aquatic environment. Six phenolic EDCs were systematically evaluated in water and surface sediment in the estuaries of those rivers. The water and sediment samples were preconcentrated by solid-phase extraction system and microwave-assisted extraction system, respectively. Phenolic EDCs were analyzed by GC-MS (Thermo Fisher Scientific, USA) after derivatization. Phenolic EDCs were found ubiquitously in the aquatic environment. The total concentrations ranged from 248 to 4,650 ng/L in water, and 113 to 3,576 ng/g dry weight in surface sediment. The residue amount of phenolic EDCs in Dianchi Lake was 258 kg/a. Concentrations of the phenolic EDCs in the Lake decreased with increase in distance to the estuaries of those rivers which run through urban and industrial areas. The rivers seriously contaminated by phenolic EDCs were Xin River, Yunliang River, Chuanfang River, Cailian River, Jinjia River, Zhengda River, and Daqing River which run through the old area of Kunming City. Satisfying correlations were observed between the concentrations of the target compounds in water and in surface sediment. NP1EO, NP2EO, and BPA were identified as the three predominant phenolic EDCs. There were significant correlations between phenolic EDCs and many basic water quality parameters. Urban and industrial areas are the major contributors for phenolic EDCs, especially in Kunming City. Compositional profiles of phenolic EDCs in surface sediment were similar to those in river water. The concentrations of phenolic EDCs in the rivers located in the northwest part of the valley were very high, and posed a potential risk to aquatic organisms and even human. The concentrations of NP2EO, NP1EO, and BPA were at moderate levels of other areas. The basic water quality parameters (TOC, TN, DO, and pH) play important roles on the distribution, fate, and behavior of phenolic EDCs in the valley.  相似文献   

20.
The magnitude and ecological relevance of metal pollution of the middle Po river deriving from the River Lambro tributary was investigated by applying different (complementary) sediment quality assessment approaches: (1) comparisons of concentrations with regional reference data, and (2) comparisons with consensus-based sediment quality guidelines (SQGs), as well as by investigations of the partitioning patterns of target heavy metals (Cd, Cu, Ni, Pb, Zn). Total metal concentrations in the surficial sediments revealed significant pollution inputs on the whole river stretch investigated, with a distinct peak at the inlet of the River Lambro. Based on the geoaccumulation index of target heavy metals, the middle reach of River Po has to be considered as moderately polluted with Cd (1相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号