首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 827 毫秒
1.
We modeled the effects of afforestation and deforestation on carbon cycling in forest floor and soil from 1900 to 2050 throughout 13 states in the southern United States. The model uses historical data on gross (two-way) transitions between forest, pasture, plowed agriculture, and urban lands along with equations describing changes in carbon over many decades for each type of land use change. Use of gross rather than net land use transition data is important because afforestation causes a gradual gain in carbon stocks for many decades, while deforestation causes a much more rapid loss in carbon stocks. In the South-Central region (Texas to Kentucky) land use changes caused a net emission of carbon before the 1980s, followed by a net sequestration of carbon subsequently. In the Southeast region (Florida to Virginia), there was net emission of carbon until the 1940s, again followed by net sequestration of carbon. These results could improve greenhouse gas inventories produced to meet reporting requirements under the United Nations Framework Convention on Climate Change. Specifically, from 1990 to 2004 for the entire 13-state study area, afforestation caused sequestration of 88 Tg C, and deforestation caused emission of 49 Tg C. However, the net effect of land use change on carbon stocks in soil and forest floor from 1990 to 2004 was about sixfold smaller than the net change in carbon stocks in trees on all forestland. Thus land use change effects and forest carbon cycling during this period are dominated by changes in tree carbon stocks.  相似文献   

2.
Terrestrial systems represent a significant potential carbon (C) sink to help mitigate or offset greenhouse gas emissions. Nearly 3.2 Mha are permitted for mining activities in the United States, which are required to be reclaimed with vegetative cover. While site-specific studies have assessed C accumulation on reclaimed mine sites, regional analyses to estimate potential C increases have not been conducted. For this analysis, potential C sequestration is analyzed on 567,000 ha of mine land in a seven-state region reclaimed to cropland, pasture, or forest. Carbon accumulation is estimated for cropland, pasture, and forest soils, forest litter layer, and aboveground biomass by estimating average annual rates of C accumulation from site-specific and general C sequestration studies. The average annual rate of C storage is highest when mine land is reclaimed to forest, where the potential sequestration is 0.7 to 2.2 Tg yr(-1). The C from soils, litter layer, and biomass from mine lands reclaimed to forest represents 0.3 to 1.0% of the 1990 CO2 emissions from the study region (919 Tg CO2). To achieve the greenhouse gas (GHG) emission reduction goal of 7% below the 1990 level as proposed by the Kyoto Treaty requires CO2 emissions in the study area to be reduced by just over 64 Tg CO2. The potential carbon storage in mine sites reclaimed to forest could account for 4 to 12.5% of these required reductions.  相似文献   

3.
The United States Climate Change Initiative includes improvements to the U.S. Department of Energy's Voluntary Greenhouse Gas Reporting Program. The program includes specific accounting rules and guidelines for reporting and registering forestry activities that reduce atmospheric CO2 by increasing carbon sequestration or reducing emissions. In the forestry sector, there is potential for the economic value of emissions credits to provide increased income for landowners, to support rural development, to facilitate the practice of sustainable forest management, and to support restoration of ecosystems. Forestry activities with potential for achieving substantial reductions include, but are not limited to: afforestation, mine land reclamation, forest restoration, agroforestry, forest management, short-rotation biomass energy plantations, forest protection, wood production, and urban forestry. To be eligible for registration, the reported reductions must use methods and meet standards contained in the guidelines. Forestry presents some unique challenges and opportunities because of the diversity of activities, the variety of practices that can affect greenhouse gases, year-to-year variability in emissions and sequestration, the effects of activities on different forest carbon pools, and accounting for the effects of natural disturbance.  相似文献   

4.
Ecosystems in the western Mediterranean basin have undergone intense changes in land use throughout the centuries, resulting in areas with severe alterations. Today, most these areas have become sensitive to human activity, prone to profound changes in land-use configuration and ecosystem services. A consensus exists amongst stakeholders that ecosystem services must be preserved but managerial strategies that help to preserve them while ensuring sustainability are often inadequate. To provide a basis for measuring implications of land-use change on carbon sequestration services, changes in land use and associated carbon sequestration potential throughout the 20th century in a rural area at the foothills of the Sierra Nevada range (SE Spain) were explored. We found that forest systems replaced dryland farming and pastures from the middle of the century onwards as a result of agricultural abandonment and afforestation programs. The area has always acted as a carbon sink with sequestration rates ranging from 28,961 t CO2 year?1 in 1921 to 60,635 t CO2 year?1 in 1995, mirroring changes in land use. Conversion from pastures to woodland, for example, accounted for an increase in carbon sequestration above 30,000 t CO2 year?1 by the end of the century. However, intensive deforestation would imply a decrease of approximately 66% of the bulk CO2 fixed. In our study area, woodland conservation is essential to maintain the ecosystem services that underlie carbon sequestration. Our essay could inspire policymakers to better achieve goals of increasing carbon sequestration rates and sustainability within protected areas.  相似文献   

5.
Greenhouse gas (GHG) mitigation options in the Russian forest sector include: afforestation and reforestation of unforested/degraded land area; enhanced forest productivity; incorporation of nondestructive methods of wood harvesting in the forest industry; establishment of land protective forest stands; increase in stand age of final harvest in the European part of Russia; increased fire control; increased disease and pest control; and preservation of old growth forests in the Russian Far-East, which are presently threatened. Considering the implementation of all of the options presented, the GHG mitigation potential within the forest and agroforestry sectors of Russia is approximately 0.6–0.7 Pg C/yr or one half of the industrial carbon emissions of the United States. The difference between the GHG mitigation potential and the actual level of GHGs mitigated in the Russian forest sector will depend to a great degree on external financing that may be available. One possibility for external financing is through joint implementation (JI). However, under the JI process, each project will be evaluated by considering a number of criteria including also the difference between the carbon emissions or sequestration for the baseline (or reference) and the project case, the permanence of the project, and leakage. Consequently, a project level assessment must appreciate the near-term constraints that will face practitioners who attempt to realize the GHG mitigation potential in the forest and agroforestry sectors of their countries.  相似文献   

6.
Land-cover change has significant influence on carbon storage and fluxes in terrestrial ecosystems. The southern United States is thought to be the largest carbon sink across the conterminous United States. However, the spatial and temporary variability of carbon storage and fluxes due to land-cover change in the southern United States remains unclear. In this study, we first reconstructed the annual data set of land-cover of the southern United States from 1860 to 2003 with a spatial resolution of 8 km. Then we used a spatially explicit process-based biogeochemical model (Terrestrial Ecosystem Model [TEM] 4.3) to simulate the effects of cropland expansion and forest regrowth on the carbon dynamics in this region. The pattern of land-cover change in the southern United States was primarily driven by the change of cropland, including cropland expansion and forest regrowth on abandoned cropland. The TEM simulation estimated that total carbon storage in the southern United States in 1860 was 36.8 Pg C, which likely was overestimated, including 10.8 Pg C in the southeast and 26 Pg C in the south-central. During 1860-2003, a total of 9.4 Pg C, including 6.5 Pg C of vegetation and 2.9 Pg C of soil C pool, was released to the atmosphere in the southern United States. The net carbon flux due to cropland expansion and forest regrowth on abandoned cropland was approximately zero in the entire southern region between 1980 and 2003. The temporal and spatial variability of regional net carbon exchange was influenced by land-cover pattern, especially the distribution of cropland. The land-use analysis in this study is incomplete and preliminary. Finally, the limitations, improvements, and future research needs of this study were discussed.  相似文献   

7.

Greenhouse gas (GHG) mitigation options in the Russian forest sector include: afforestation and reforestation of unforested/degraded land area; enhanced forest productivity; incorporation of nondestructive methods of wood harvesting in the forest industry; establishment of land protective forest stands; increase in stand age of final harvest in the European part of Russia; increased fire control; increased disease and pest control; and preservation of old growth forests in the Russian Far-East, which are presently threatened. Considering the implementation of all of the options presented, the GHG mitigation potential within the forest and agroforestry sectors of Russia is approximately 0.6–0.7 Pg C/yr or one half of the industrial carbon emissions of the United States. The difference between the GHG mitigation potential and the actual level of GHGs mitigated in the Russian forest sector will depend to a great degree on external financing that may be available. One possibility for external financing is through joint implementation (JI). However, under the JI process, each project will be evaluated by considering a number of criteria including also the difference between the carbon emissions or sequestration for the baseline (or reference) and the project case, the permanence of the project, and leakage. Consequently, a project level assessment must appreciate the near-term constraints that will face practitioners who attempt to realize the GHG mitigation potential in the forest and agroforestry sectors of their countries.

  相似文献   

8.
During April 2007, forest land per capita in the United States dropped below 1 ha. This is the result of a rather static area of forest land in the United States for the past 100 years combined with population growth. The US now joins the ranks of most countries (77%) having forest land per capita below 1 ha. The combination of an increasing human population with stable or increasing per capita natural resource utilization may place even more demand on resources derived from forest land in the future. The forest land per capita should be expected to continue its downward trend unless substantive demographic, resource utilization, and land-use changes occur.  相似文献   

9.
This paper introduces an integrated assessment (IA) approach for a Canada-China joint research project that linked forest carbon sequestration, forest resource management, and local sustainability enhancement. The purpose of the IA was to improve the measurement of carbon in different land uses and vegetation covers, as well as to direct decision makers to those land uses or options as an CO2 emission reduction strategy while supporting rural sustainable development. In this connection, three questions are addressed in this paper:
1)
How will forestry carbon sequestration land use policies affect regional sustainability prospects in rural China?  相似文献   

10.
In 2012, focus groups were organized with individuals owning 20+ acres in the Lake States region of the United States (Michigan, Minnesota, and Wisconsin) to discuss various issues related to forest carbon offsetting. Focus group participants consisted of landowners who had responded to an earlier mail-back survey (2010) on forest carbon offsets. Two focus groups were held per state with an average of eight participants each (49 total). While landowner participant types varied, overall convergence was reached on several key issues. In general, discussion results found that the current payment amounts offered for carbon credits are not likely, on their own, to encourage participation in carbon markets. Landowners are most interested in other benefits they can attain through carbon management (e.g., improved stand species mix, wildlife, and trails). Interestingly, landowner perceptions about the condition of their own forest land were most indicative of prospective interest in carbon management. Landowners who felt that their forest was currently in poor condition, or did not meet their forest ownership objectives, were most interested in participating. While the initial survey sought landowner opinions about carbon markets, a majority of focus group participants expressed interest in general carbon management as a means to achieve reduced property taxes.  相似文献   

11.
Chang R  Fu B  Liu G  Liu S 《Environmental management》2011,48(6):1158-1172
Conversion of cropland into perennial vegetation land can increase soil organic carbon (SOC) accumulation, which might be an important mitigation measure to sequester carbon dioxide from the atmosphere. The “Grain for Green” project, one of the most ambitious ecological programmes launched in modern China, aims at transforming the low-yield slope cropland into grassland and woodland. The Loess Plateau in China is the most important target of this project due to its serious soil erosion. The objectives of this study are to answer three questions: (1) what is the rate of the SOC accumulation for this “Grain for Green” project in Loess Plateau? (2) Is there a difference in SOC sequestration among different restoration types, including grassland, shrub and forest? (3) Is the effect of restoration types on SOC accumulation different among northern, middle and southern regions of the Loess Plateau? Based on analysis of the data collected from the literature conducted in the Loess Plateau, we found that SOC increased at a rate of 0.712 TgC/year in the top 20 cm soil layer for 60 years under this project across the entire Loess Plateau. This was a relatively reliable estimation based on current data, although there were some uncertainties. Compared to grassland, forest had a significantly greater effect on SOC accumulation in middle and southern Loess Plateau but had a weaker effect in the northern Loess Plateau. There were no differences found in SOC sequestration between shrub and grassland across the entire Loess Plateau. Grassland had a stronger effect on SOC sequestration in the northern Loess Plateau than in the middle and southern regions. In contrast, forest could increase more SOC in the middle and southern Loess Plateau than in the northern Loess Plateau, whereas shrub had a similar effect on SOC sequestration across the Loess Plateau. Our results suggest that the “Grain for Green” project can significantly increase the SOC storage in Loess Plateau, and it is recommended to expand grassland and shrub areas in the northern Loess Plateau and forest in the middle and southern Loess Plateau to enhance the SOC sequestration in this area.  相似文献   

12.
Approximately 37% of forestlands in the conterminous United States are publicly owned; they represent a substantial area of potential carbon sequestration in US forests and in forest products. However, large areas of public forestlands traditionally have been less intensively inventoried than privately owned forests. Thus, less information is available about their role as carbon sinks. We present estimates of carbon budgets on public forestlands of the 48 conterminous states, along with a discussion of the assumptions necessary to make such estimates. The forest carbon budget simulation model, FORCARB2, makes estimates for US forests primarily based on inventory data. We discuss methods to develop consistent carbon budget estimates from inventory data at varying levels of detail. Total carbon stored on public forestlands in the conterminous US increased from 16.3 Gt in 1953 to the present total of 19.5 Gt, while area increased from 87.1 million hactares to 92.1 million hactares. At the same time the proportion of carbon on public forestlands relative to all forests increased from 35% to 37%. Projections for the next 40 years depend on scenarios of management influences on growth and harvest.This article was written and prepared by US Government employees on official time, and it is therefore in the public domain and not subject to copyright.  相似文献   

13.
Growing demand for corn due to the expansion of ethanol has increased concerns that environmentally sensitive lands retired from agricultural production and enrolled into the Conservation Reserve Program (CRP) will be cropped again. Iowa produces more ethanol than any other state in the United States, and it also produces the most corn. Thus, an examination of the impacts of higher crop prices on CRP land in Iowa can give insight into what we might expect nationally in the years ahead if crop prices remain high. We construct CRP land supply curves for various corn prices and then estimate the environmental impacts of cropping CRP land through the Environmental Policy Integrated Climate (EPIC) model. EPIC provides edge-of-field estimates of soil erosion, nutrient loss, and carbon sequestration. We find that incremental impacts increase dramatically as higher corn prices bring into production more and more environmentally fragile land. Maintaining current levels of environmental quality will require substantially higher spending levels. Even allowing for the cost savings that would accrue as CRP land leaves the program, a change in targeting strategies will likely be required to ensure that the most sensitive land does not leave the program.  相似文献   

14.
在对近几年相关研究文献进行梳理的基础上,试图厘清现阶段我国森林碳汇市场的研究现状,并追溯我国森林碳汇市场研究的发展脉络.主要从构建我国森林碳汇市场的必要性、可行性与意义,森林碳汇储量测量、森林碳汇市场运行模式与运行机制等方面进行评述,并提出进一步研究展望.认为未来研究应在创新整合森林碳汇储量测量方法,从政治、法律、制度、政策、环境与市场机制方面整体考虑提升我国森林碳汇市场的选择路径,从供需视角加强对市场交易主体的微观层面研究等方面突破.  相似文献   

15.
Landscape Trends in Mid-Atlantic and Southeastern United States Ecoregions   总被引:3,自引:0,他引:3  
Landscape pattern and composition metrics are potential indicators for broad-scale monitoring of change and for relating change to human and ecological processes. We used a probability sample of 20-km × 20-km sampling blocks to characterize landscape composition and pattern in five US ecoregions: the Middle Atlantic Coastal Plain, Southeastern Plains, Northern Piedmont, Piedmont, and Blue Ridge Mountains. Land use/land cover (LULC) data for five dates between 1972 and 2000 were obtained for each sample block. Analyses focused on quantifying trends in selected landscape pattern metrics by ecoregion and comparing trends in land cover proportions and pattern metrics among ecoregions. Repeated measures analysis of the landscape pattern documented a statistically significant trend in all five ecoregions towards a more fine-grained landscape from the early 1970s through 2000. The ecologically important forest cover class also became more fine-grained with time (i.e., more numerous and smaller forest patches). Trends in LULC, forest edge, and forest percent like adjacencies differed among ecoregions. These results suggest that ecoregions provide a geographically coherent way to regionalize the story of national land use and land cover change in the United States. This study provides new information on LULC change in the southeast United States. Previous studies of the region from the 1930s to the 1980s showed a decrease in landscape fragmentation and an increase in percent forest, while this study showed an increase in forest fragmentation and a loss of forest cover.  相似文献   

16.
Managed forests are a primary land use within the Coastal Plain of the southern United States. These forests are generally managed under standards, guidelines, or regulations to conserve ecosystem functions and services. Economic value of commercial forests provides incentives for landowners to maintain forests rather than convert them to other uses that have substantially reduced environmental benefits. In this review, we describe the historical context of commercial forest management in the southern United States Coastal Plain, describe how working forests are managed today, and examine relationships between commercial forest management and maintenance of functional aquatic and wetland systems and conservation of biological diversity. Significant challenges for the region include increasing human population and urbanization and concomitant changes in forest area and structure, invasive species, and increased interest in forest biomass as an energy feedstock. Research needs include better information about management of rare species and communities and quantification of relationships between ecosystem attributes and forest management, including biomass production and harvest. Incentives and better information may help commercial forest managers in the Coastal Plain more efficiently contribute to landscape-scale conservation goals.  相似文献   

17.
21世纪初的玛纳斯县域土地利用面临新的政策和技术背景,采用遥感技术对2000年和2005年玛纳斯县域人类主要活动区各类景观进行比对分析,发现研究区内耕地、城镇景观面积出现大幅增长,林地、草地景观面积显著下降,“农林”、“农草”争水、争地的矛盾逐渐激化,水资源的供需处于“紧平衡”状态,区域景观生态系统的多样性、稳定性降低。分析表明农业产业组织形式的创新和农业节水灌溉技术的突破是玛纳斯县域景观生态变化的关键因子。  相似文献   

18.
ABSTRACT: Forest and grass riparian buffers have been shown to be effective best management practices for controlling nonpoint source pollution. However, little research has been conducted on giant cane [Arundinaria gigantea (Walt. Muhl.)], a formerly common bamboo species, native to the lower midwestern and southeastern United States, and its ability to reduce nutrient loads to streams. From May 2002 through May 2003, orthophosphate or dissolved reactive phosphate (DRP) concentrations in ground water were measured at successive distances from the field edge through 12 m of riparian buffers of both giant cane and mixed hardwood forest along three streams draining agricultural land in the Cache River watershed in southern Illinois. Giant cane and mixed hardwood forest did not differ in their DRP sequestration abilities. Ground water DRP concentrations were significantly reduced (14 percent) in the first 1.5 m of the buffers, and there was an overall 28 percent reduction in DRP concentration by 12 m from the field edge. The relatively low DRP reductions compared to other studies could be attributed to high DRP input levels, narrow (12 m) buffer lengths, and/or mature (28 to 48 year old) riparian vegetation.  相似文献   

19.
The Sloping Land Conversion Program (also known as "Grain for Green" or the Upland Conversion Program) for converting cropland to forest is one of China's most ambitious environmental initiatives, and is one of the world's largest land-conservation programs with a budget of RMB 337 billion (over US$ 40 billion). Although environmental impacts have played a vital role in the general reasoning and argumentation for forest plantations, environmental impact analyses have often received less attention than economic analyses in the planning of plantation forestry projects. The overall goal of this paper is to evaluate the program's environmental impact considering the farmer's interests and the potential social benefits due to carbon sequestration in different scenarios based on household and field survey data in Dunhua County. Our findings are that: (1) in many cases, the program did not give adequate consideration to land productivity and environmental heterogeneity when selecting plots; (2) more than half of the reforestation plots were on flat cropland (slopes of less than 5 degrees ); (3) in five of the eight townships, net incomes on reforested land were substantially above or below previous crop incomes, raising questions about the efficiency of the allocation of compensation to farmers participating in the program; (4) the potential carbon co-benefit increased the NPV of the program by 5954-7009 RMB/ha. In conclusion, we recommend that more attention should be paid to the quality of reforestation programs rather than just their scale and note that consideration of potential carbon sequestration co-benefits enhances the benefits of cropland conversion programs.  相似文献   

20.
Climate change involves increasing atmospheric carbon dioxide concentration which is driven by anthropogenic emissions. Afforestation, which is the establishment of forests on previously non‐forested lands, could be a suitable climate change mitigation strategy. The aim of this research is to evaluate the carbon sequestration capability of the Eucalyptus and Prosopis species in the Reza‐Abad afforestation park in western Iran. For this aim, three stands of any species were selected. For quantitative assessment, a transect was implemented at the length of 100 m. In trees located of transects, the general characteristics of species were measured. Also, for estimating the amount of litter, a sample plot has been measured at the center of the quadrate. These samples were taken from the afforested area, the control area inside the afforested area and another control area outside. In each stand, species were selected randomly and one‐eighth of the whole stand was taken for calculating the percentage of carbon and aerial biomass. Then the aboveground organs were weighted and after the transfer of different plant organs to the laboratory, the conversion factor of carbon sequestration of the plant organs was determined individually by combustion method. Also, soil samples were also collected from two depths of 0–15 and 15–30 cm in each of the cultivated and control parts. The results showed that there is a significant difference between the species and Prosopis has higher carbon sequestration than Eucalyptus. The carbon sequestration among different organs showed a significant difference, carbon sequestration was 19.24 t/ha for Eucalyptus and 18.43 t/ha for Prosopis. After an economic calculation, it was concluded that afforestation has a positive effect on the reduction of atmospheric carbon dioxide. Hence, these results allow decision makers to change land use from desert area to forest, and planting the Prosopis species is more recommendable than Eucalyptus for afforestation in such areas which are economically profitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号