首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Otolith microstructure and chemical composition (Sr:Ca ratios) of the European conger eel (Conger conger) were examined during the larval developmental stages by scanning electron microscopy and wavelength dispersive spectrometer. Back-calculated hatching dates from the otolith microstructure of the developing leptocephali indicate a protracted spawning season from December to June. The early age of our developing specimens captured south of the Azores Islands suggests that the conger eel has another spawning area closer to Azores than the Mediterranean. Otolith increment width, which was relatively constant and narrow in the developing leptocephalus stage, increased sharply at age 170-250 days. Sr:Ca ratios in the otolith, which increased during the developing leptocephalus stage, showed a rapid drop coinciding with the increase in increment width. These coincidental changes were regarded as the onset of metamorphosis for this species. A close linear relationship between the age at metamorphosis and otolith growth rate indicates that the faster-growing larvae metamorphose earlier, suggesting that somatic growth should play an important role in the timing of metamorphosis. As shown in earlier work, the existence of an otolith marginal zone with unclear rings during metamorphosis prevents an accurate estimate of the larval stage duration of this species.  相似文献   

2.
T. W. Lee  J. S. Byun 《Marine Biology》1996,125(2):259-268
Otolith growth during metamorphosis and some aspects of the early life history of conger eel (Conger myriaster) were determined as indicated from microstructure in otoliths of the leptocephali collected from Cheonsu Bay, Korea during May and June 1988. The leptocephali occurred from early May to late June in the study area. Larvae collected in early May were in the late leptocephalus stage, and the proportion of the metamorphosing leptocephali increased over time. Otoliths in the late leptocephalus stage showed a translucent zone only. Although the fish did not feed and the body length diminished during metamorphosis, the otolith continued to grow and, consequently, the opaque zone was formed outside the translucent zone. The inner translucent zone can be considered a leptocephalus zone, and the outer opaque zone a metamorphic zone. Assuming that the growth increments were deposited daily from hatching, the conger eel can be considered to have hatched between September and February. The number of increments in the inner hyaline zone ranged from 124 to 239, and was assumed to represent the number of days from hatching to the onset of metamorphosis. The duration of metamorphosis was estimated as 51 to 75 d based on the number of increments in the opaque zone at the end of the metamorphic stage.  相似文献   

3.
The growth history and recruitment dynamics of eel (Anguilla japonica) elvers were studied. Observations were based on growth increments in sagittal otoliths of elvers collected from Shuang-Chi River estuary off northeastern Taiwan, from November 1985 to February 1986. Total lengths of elvers upon arrival at the estuary were similar in most case; mean total lengths were from 55.99 to 59.06 mm. Daily ages of elvers at arrival ranged from 112.8±9.4 (±SD) to 156.5±13.5 d, indicating that migration of eel larvae from their oceanic spawning ground to the estuary requires 4 to 5 mo. Elver hatching dates, back-calculated from estimated daily ages, indicated that the spawning season lasted 5 mo (from late June to early October). Furthermore, the earlier eels spawned, the earlier elvers reached the estuary. The transition in growth history during the larval stage was obvious, as indicated from the change in increment width in elver otoliths. The inverse correlation between daily age and mean daily growth rates of fish length and otolith indicated that the age of elvers upon arrival at the estuary was susceptible to larval growth rate. In other words, the time taken on migration from oceanic spawning ground to the estuary was shorter for fast-growing larvae than for slowgrowing ones.  相似文献   

4.
Genetic variation (mtDNA) of the European conger eel, Conger conger, was compared across five locations in the north-eastern Atlantic (Madeira, Azores, South Portugal, North Portugal and Ireland) and one location in the western Mediterranean (Mallorca). Genetic diversity of conger eel was high, and differentiation among regions was not significant. Additionally, comparisons of element:Ca ratios (Sr:Ca, Ba:Ca, Mn:Ca and Mg:Ca) in otolith cores (larval phase) and edges (3?months prior to capture) among the Azores, North Portugal, Madeira and Mallorca regions for 2?years indicated that variation among regions were greater for edges than cores. Therefore, while benthic conger may display residency at regional scales, recruitment may not necessarily be derived from local spawning and larval retention. Furthermore, data from otoliths suggest a separated replenishment source for western Mediterranean and NE Atlantic stocks. The combination of genetics and otolith chemistry suggests?a population model for conger eel involving a broad-scale dispersal of larvae, with limited connectivity for benthic juvenile life stages at large spatial scales, although the existence of one or multiple spawning grounds for the species remains uncertain.  相似文献   

5.
Leptocephali of the widely distributed tropical marine eels of the genus Kaupichthys (family Chlopsidae) were collected around Sulawesi Island during a sampling survey in the Indonesian Seas in late September and early October 2002, and the otolith microstructure of 24 of the 59 specimens captured was examined to learn about the larval growth rates and spawning times of these small sized eels. Leptocephali ranging in size from 25 to 60 mm were collected in Makassar Strait and the Celebes Sea, but they were most abundant in the semi-enclosed Tomini Bay of northeast Sulawesi Island. The Kaupichthys leptocephali examined had 39–161 otolith growth increments. Their back-calculated hatching dates indicated that five age groups were present and each group appeared to have been spawned around the full moon of previous months. Average growth rate estimates of the first two age groups were 0.65 and 0.54 mm/day for the 27.4–30.4 and 37.6–45.6 mm age classes. The growth rates of the oldest three age groups (52.0–60.8 mm) appeared to have slowed down after they reached their approximate maximum size. An increase in increment widths at the outer margin of the otoliths of those larger than 53 mm suggested that the process of metamorphosis had begun even though there were few external morphological changes indicating metamorphosis. It is hypothesized that chlopsid leptocephali have an unusually short gut that may not need to move forward during early metamorphosis. The presence of four age classes in Tomini Bay suggests that the Togian Islands region may be productive habitats for Kaupichthys juveniles and adults.  相似文献   

6.
Content ratios of strontium (Sr) to calcium (Ca) in the otolith of Conger myriaster metamorphosing leptocephali and elvers increased with increasing increment number from the core to the 110th increment and subsequently decreased. The otolith region from the 110th increment to the edge corresponded to the metamorphic stage. The Sr:Ca ratios in otolith edges of metamorphosing leptocephali were inversely related to metamorphic stage, suggesting that the changes in otolith Sr:Ca ratios were influenced by some physiological factor(s) rather than by environmental factors. Sr concentration in leptocephalus somatic tissues was high and decreased as metamorphosis progressed until the late metamorphic stage when the preanal myomere to total myomere ratio was 0.4. Ca concentration was constant throughout ontogenesis. Body Sr:Ca ratios markedly decreased as metamorphosis progressed. Decrease in somatic Sr concentration and the consequent decrease in body Sr:Ca ratios seemed to be associated with the breakdown of glycosaminoglycan (GAG) in gelatinous matrix, which is the major constituent of soft tissue in leptocephali. Catabolism of GAG may also cause a decrease in otolith Sr:Ca ratios during metamorphosis. In leptocephalus otoliths, Sr:Ca ratios may change in association with the synthesis and breakdown of GAGs during ontogeny. Received: 29 November 1996 / Accepted: 6 January 1997  相似文献   

7.
This study reviewed literature on spawning times for three north temperate species of anguillid eels estimated by sampling for small leptocephali (larvae) at sea and for several temperate and tropical species by back-calculating from putative daily ages derived from otolith increment analysis of glass eels that recruited to coastal waters. Estimates from otoliths of European eels, Anguilla anguilla, American eels, Anguilla rostrata, and Japanese eels, Anguilla japonica, imply much more protracted spawning seasons than are indicated by sampling at sea during various times of year. European eels are inferred to spawn year-round from otolith analysis, but the smallest, recently hatched leptocephali are found only in late winter and spring. From otoliths, the spawning times of these three species are all estimated to occur much later in the year than when small leptocephali are found at sea, indicating that ages appear to be underestimated. For these and other temperate and tropical eels, there are inconsistencies in assigned ages among various studies, which are most extreme for the European eel. This species has the longest larval migration and often has an opaque zone in the glass eels’ otoliths where it is difficult to discern growth increments. These inconsistencies suggest that interpretation of otolith growth increments is incorrect at least in some studies, and the apparently consistent mismatch between otolith and sea-sampling studies suggests that increments may not always be formed at some period during the unusual early life history of anguillids. Because daily increments may be formed in eels during most of their early life history, future research is needed to determine the cause of the mismatch of glass eel aging studies and the apparent spawning times of eels offshore. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
James D. McCleaveEmail:
  相似文献   

8.
A comparative study of the otolith microstructure and microchemistry of Anguilla marmorata glass eels in the western North Pacific (Japan, Taiwan, the Philippines, Indonesia) determined the timing of metamorphosis and age at recruitment to freshwater habitats with a view to learning about the early life history and recruitment of this species of tropical anguillid eel, which has a wide range throughout much of the western Pacific and parts of the Indian Ocean. Three new samples (from Japan, Taiwan, Indonesia) were analyzed and statistically compared along with two other previously published samples that were analyzed using the same techniques. Ages at metamorphosis and recruitment, respectively, were 123ᆡ.4 days (mean-SD) and 154ᆥ.0 days in specimens from Japan, 116ᆢ.6 days and 145ᆣ.6 days in those from Taiwan, 120ᆡ.0 days and 154ᆡ.5 days in the Philippines stock and 132Nj.7 days and 159ᆟ.7 days, and 120ᆣ.6 days and 152ᆣ.2 days in the Indonesian stock. The average duration of the period of metamorphosis estimated from otolith microstructure was very similar (15-17 days) in the specimens from all locations. A close linear relationship was found between the ages at metamorphosis and recruitment at all locations, suggesting that individuals that metamorphosed earlier were recruited to freshwater habitats at a younger age. Back-calculated hatching dates ranged over about 6 months of the year, suggesting that this species may spawn throughout much of the year. It is hypothesized that specimens from all four sites are from the same spawning population originating in a spawning area in the North Equatorial Current of the western North Pacific.  相似文献   

9.
Yu-San Han 《Marine Biology》2011,158(10):2349-2358
Japanese eels spawn mainly during June–August. The larvae (leptocephali) then drift for 3–5 months before metamorphosing into glass eels. The recruitment season generally starts in southern East Asia in November and in northern areas in April the following year, a lag of ~5 months. However, analysis of otolith daily growth rings revealed only a 1–2-month difference in the mean leptocephalus stage between southern and northern East Asian samples. Experiments and field observation indicate that glass eels may starve, lose body weight, and remain in early pigmentation stage for a few months in cold waters. The time lag in recruitment can be accounted for by a longer leptocephalus stage combined with a low temperature-driven delay to upstream migration in winter. The leptocephalus duration and oceanic currents determine the dispersal locations up to the glass eel phase, while temperatures determine the timing of upstream migration time at each location.  相似文献   

10.
A survey for leptocephali around Sulawesi Island in the central Indonesian Seas during May 2001 found that the leptocephali of the congrid eel, Ariosoma scheelei, were present in all seven areas that were sampled. A total of 551 leptocephali (22–166 mm TL) were collected, and A. scheelei was by far the most abundant species of leptocephali collected during the survey. The wide range of sizes in most areas indicated that spawning had occurred during a period of several months in many different areas, although the exact spawning locations were not determined. The larger size classes were more abundant in all areas except in Tomini Bay on the northeast side of Sulawesi Island. The highest catch rates were observed at the eastern edge of the Java Sea and to the north in the Celebes Sea near Makassar Strait. Premetamorphic leptocephali were also collected in surface samples at 11 stations (N=62), but metamorphosing leptocephali (N=86) were only caught in IKMT tows that fished from the surface to about 200 m. Metamorphosing leptocephali were collected primarily at two stations in the Java Sea and Makassar Strait where a surface layer of lower-salinity water was detected. Their total lengths (105.3–153.3 mm) and the largest premetamorphic individuals suggested that this species can reach maximum sizes of about 165 mm before beginning to metamorphose. It is hypothesized that this species may be abundant in the Indonesian Seas region and that it has ecological traits such as large size at recruitment and a small size at reproduction that have made it successful in many regions of the Indo-Pacific.  相似文献   

11.
The development of gill chloride cells was examined in premetamorphic larvae (leptocephali) and juveniles (glass eels) of the Japanese eel, Anguilla japonica. Branchial chloride cells were detected by immunocytochemistry using an antiserum specific for Na+,K+-ATPase. The specificity and availability of the antiserum for the detection of Japanese eel chloride cells were confirmed by Western blot analysis. The chloride cells first appeared on the developing gill filaments in a mid larval stage of leptocephalus (32.2 mm). Both immunoreactivity and the number of chloride cells gradually increased as the fish grew to a late stage of leptocephalus over 54 mm. In glass eels just after metamorphosis, gill lamellae developed from the gill filaments, and a rich population of chloride cells was observed in the gill filaments. In glass eels collected at a coastal area, chloride cells were extensively distributed in the gill filaments. The chloride cell size decreased progressively in glass eels transferred from seawater (SW) to freshwater (FW), whereas there was no difference in cell number. In contrast, some Na+,K+-ATPase immunoreaction distinct from typical chloride cells was observed in the gill lamellae throughout FW-transferred fish, but disappeared in control fish maintained in SW for 14 days. These findings indicate that the gill and gill chloride cells developed slowly during the extremely long larval stage, followed by rapid differentiation during a short period of metamorphosis. The excellent euryhalinity of glass eels may be due to the presence of the filament chloride cells and lamellar Na+,K+-ATPase-immunoreaction, presumably being responsible for SW and FW adaptation, respectively.  相似文献   

12.
Otolith microstructure and microchemistry were examined in juveniles of American (Anguilla rostrata) and European (A. anguilla) eels. Otolith increment width markedly increased from age 132 to 191 d (156 ± 18.9 d; mean ± SD) in A. rostrata and 163 to 235 d (198 ± 27.4 d; mean ± SD) in A. anguilla, both of which were coincident with drastic decreases in otolith Sr:Ca ratios, suggesting that metamorphosis from leptocephalus to glass eel began at those ages in each species. The duration of metamorphosis was estimated to be 18 to 52 d from otolith microstructure, for both species studied. Ages at recruitment were 171 to 252 d (206 ± 22.3 d; mean ± SD) in A. rostrata and 220 to 281 d (249 ± 22.6 d; mean ± SD) in A. anguilla. In these two species, positive linear relationships were found in ages between the beginning of metamorphosis and recruitment, suggesting that early metamorphosing larvae recruited at younger ages. Duration of the leptocephalus stage to recruitment in A. anguilla was about 40 d longer than that in A. rostrata. The geographical segregation between the two species in the Atlantic Ocean seems to be involved in the differences in the duration of the leptocephalus stage (age at metamorphosis). Received: 8 November 1999 / Accepted: 8 May 2000  相似文献   

13.
Otolith microstructure and microchemistry of the tropical eel Anguilla bicolor pacifica Schmidt were examined in glass eels collected at the mouth of the Dumoga River, North Sulawesi Island, Indonesia. Ages of the glass eels examined (age at recruitment) ranged from 124 to 202 d (167 ± 19.3 d; mean ± SD), hatching being estimated as having occurred between November 1995 and March 1996. Otolith increment widths markedly increased from age 101 to 172 d (135 ± 18.2 d; mean ± SD), coincident with a drastic decrease in otolith Sr:Ca ratios, suggesting that metamorphosis began during that period. The duration of metamorphosis was estimated as 20 to 40 d, on the basis of otolith microstructural characteristics. The fluctuation patterns in otolith increment widths and Sr:Ca ratios were similar to those of the temperate Japanese eel A. japonica. Received: 20 May 1998 / Accepted: 7 October 1998  相似文献   

14.
Many planktonic organisms have adaptations such as floats or lighter substances to obtain buoyancy to help them remain in the surface layer of the ocean where photosynthetic primary production occurs and food is most abundant. The almost totally transparent eel larvae, called leptocephali, are a unique member of the planktonic community of the surface layer, but their ecology and physiology are poorly understood. We conducted a comparative study on the specific gravity of planktonic animals including 25 taxa of 7 phyla of marine invertebrates and 6 taxa of leptocephali (vertebrate) to gain a broad perspective on the buoyancy of the eggs and larval stages of the Japanese eel. The specific gravity values of the various freshly caught marine invertebrate taxa varied widely from 1.020 to 1.425, but leptocephali had some of the lowest values (1.028–1.043). Artificially cultured live leptocephali had even greater buoyancies with specific gravities of 1.019–1.025 that were close to or lower than seawater, and their buoyancy showed ontogenetic changes among the different early life history stages. Leptocephali appear to have a unique mechanism of buoyancy control by chloride cells all over body surface through osmoregulation of body fluid contained in the extracellular matrix of transparent gelatinous glycosaminoglycans filling their bodies. This adaptation is likely a key factor for their survival by helping them to remain in the surface layer where food particles are the most abundant, while being transparent for predator avoidance. The ontogenetic change in buoyancy of eel eggs, leptocephali and glass eels likely enhances their larval survival, transport, and recruitment to terrestrial freshwater habitats.  相似文献   

15.
In order to examine the early life-history characteristics of tropical eels, otolith microstructure and microchemistry were examined in leptocephali of Anguilla bicolor pacifica (27.6-54.1 mm TL, n=20) and A. marmorata (22.0-47.3 mm TL, n=8) collected during a cruise in the western Pacific. A. bicolor pacifica occurred between 10°N and 15°N in the west and between 5°S and 10°N farther to the east. A. marmorata also occurred in two different latitudinal ranges in the Northern (15-16°N) and Southern Hemispheres (3-15°S) of the western Pacific. The increment widths in the otoliths of these leptocephali increased between the hatch check (0 days) and about an age of 30 days in both species, and then gradually decreased toward the otolith edge. Otolith Sr:Ca ratios showed a gradual increase from the otolith center to the edge. The ages of A. bicolor pacifica and A. marmorata leptocephali ranged from 40 to 128 days and from 38 to 99 days, respectively. Growth rates of A. bicolor pacifica and A. marmorata leptocephali ranged from 0.33 to 0.71 mm day-1 and from 0.45 to 0.63 mm day-1, respectively. These leptocephali had estimated growth rates that were spread out throughout most of the reported range of growth rates of the leptocephali of the temperate species, the Japanese eel and the Atlantic eels. Differences in the spatial distribution in relation to current systems, and the age and size compositions of the leptocephali of A. bicolor pacifica and A. marmorata suggested different spawning locations for these two species.  相似文献   

16.
Leptocephali of the tropical eel Anguilla marmorata have been consistently collected in the same area of the North Equatorial Current (NEC) in the western North Pacific during three consecutive cruises in June and July of 1991 (N=28) and 1994 (N=20), and July and September of 1995 (N=27), indicating that this is a spawning area of this species. These leptocephali were collected from 130°E to 142°E and 12°N to 20°N, to the west of the Mariana Islands, in 20 tows in 1991, in 13 tows in 1994 and in 17 tows in 1995, indicating a widespread presence, but a relatively low abundance. Six of these specimens (16.3-36.0 mm total length) from the 1995 cruise, which were of the typical size range of these leptocephali, were genetically confirmed to be A. marmorata in a previous study. The consistent presence of recently spawned A. marmorata leptocephali (9-20 mm) in all 3 years, suggests that the western region of the NEC is the spawning area of the northern population of A. marmorata that was identified in a recent population genetics study. These leptocephali would thus be transported westward by the NEC and then transported north into the Kuroshio Current and toward Taiwan and Japan, or south toward the southern Philippines and into the Celebes Sea by the Mindanao Current. Available evidence indicates that A. marmorata may have potentially year-round spawning, and the presence of a spawning area of this species in the same region as that of Anguilla japonica suggests that the northern population of A. marmorata has evolved a spawning migration from East Asia, the Philippines and the Celebes Sea region to the NEC area, but differs from A. japonica by having some individuals that recruit to more southern areas.  相似文献   

17.
In order to understand the reproductive contribution among migratory types in the Japanese eel, Anguilla japonica, otolith strontium (Sr) and calcium (Ca) concentrations by X-ray electron microprobe analysis were examined for 37 silver eels collected in Kii Channel off Shikoku Island during the spawning migration season. The wide range of otolith Sr:Ca ratios indicated that the habitat use of A. japonica was not obligatory but facultative among fresh, brackish and marine waters during their growth phases after recruitment to the coastal areas as glass eels. Three migratory types, which were categorized as river eels, estuarine eels and sea eels were found. The estuarine eels were dominant (59%), followed by sea eels (22%) and river eels (19%). The low proportion of river eels from the spawning migration season suggested that the estuarine and sea eels inhabiting the nearby coastal areas might make a larger reproductive contribution to the next generation in this area.  相似文献   

18.
The distinctive larval stage of eels (leptocephalus) facilitates dispersal through prolonged life in the open ocean. Leptocephali are abundant and diverse off North Carolina, yet data on distributions and biology are lacking. The water column (from surface to 1,293 m) was sampled in or near the Gulf Stream off Cape Hatteras, Cape Lookout, and Cape Fear, North Carolina during summer through fall of 1999–2005, and leptocephali were collected by neuston net, plankton net, Tucker trawl, and dip net. Additional samples were collected nearly monthly from a transect across southern Onslow Bay, North Carolina (from surface to 91 m) from April 2000 to December 2001 by bongo and neuston nets, Methot frame trawl, and Tucker trawl. Overall, 584 tows were completed, and 224 of these yielded larval eels. The 1,295 eel leptocephali collected (combining all methods and areas) represented at least 63 species (nine families). Thirteen species were not known previously from the area. Dominant families for all areas were Congridae (44% of individuals, 11 species), Ophichthidae (30% of individuals, 27 species), and Muraenidae (22% of individuals, ten species). Nine taxa accounted for 70% of the overall leptocephalus catches (in order of decreasing abundance): Paraconger caudilimbatus (Poey), Gymnothorax ocellatus Agassiz complex, Ariosoma balearicum (Delaroche), Ophichthus gomesii (Castelnau), Callechelys muraena Jordan and Evermann, Letharchus aliculatus McCosker, Rhynchoconger flavus (Goode and Bean), Ophichthus cruentifer (Goode and Bean), Rhynchoconger gracilior (Ginsburg). The top three species represented 52% of the total eel larvae collected. Most leptocephali were collected at night (79%) and at depths > 45 m. Eighty percent of the eels collected in discrete depth Tucker trawls at night ranged from mean depths of 59–353 m. A substantial number (38% of discrete depth sample total) of larval eels were also collected at the surface (neuston net) at night. Daytime leptocephalus distributions were less clear partly due to low catches and lower Tucker trawl sampling effort. While net avoidance may account for some of the low daytime catches, an alternative explanation is that many species of larval eels occur during the day at depths > 350 m. Larvae of 21 taxa of typically shallow water eels were collected at depths > 350 m, but additional discrete depth diel sampling is needed to resolve leptocephalus vertical distributions. The North Carolina adult eel fauna (estuary to at least 2,000 m) consists of 51 species, 41% of which were represented in these collections. Many species of leptocephali collected are not yet known to have juveniles or adults established in the South Atlantic Bight or north of Cape Hatteras. Despite Gulf Stream transport and a prolonged larval stage, many of these eel leptocephali may not contribute to their respective populations.  相似文献   

19.
Although distinct otolith elemental signatures are often observed in fish collected from different estuaries, significant differences are also observed among sites within estuaries. Variation at these smaller spatial scales is not well quantified and has the potential to lead to inappropriate interpretations of otolith elemental data. To quantify variation at multiple scales, the otolith elemental composition (Mg:Ca, Mn:Ca, Sr:Ca, Ba:Ca, and Pb:Ca) of juvenile staghorn sculpin (Leptocottus armatus Girard, 1854) collected from five sites within three estuaries, the Columbia River (two sites) and Coos Bay (one site), Oregon, and Humboldt Bay, California (two sites), was examined. Using laser ablation-inductively coupled plasma mass spectrometry, each otolith was sampled at three zones: (1) within the primordium, which represents the egg and early larval periods; (2) at the outer edge, which represents the juvenile period just prior to collection; and (3) midway between the primordial and edge samples, which represents the late larval and early juvenile period. There were significant differences in otolith metal-to-calcium ratios at all scales examined. Using multi-element otolith signatures, fish were classified to estuary and site within estuary with relatively high levels of accuracy (av = 70–90%). The largest differences in metal-to-calcium ratios were observed between sites within estuaries (<5 km apart) and the smallest differences were observed among otolith zones. Variation in otolith chemistry may be used to provide information on probable habitat use by estuarine fish but studies must be carefully designed. Electronic supplementary material  Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

20.
This study measured the progression from pelagic larvae to juvenile barnacles, and examined whether recruitment of barnacles, Semibalanus balanoides Linnaeus, at two intertidal sites in contrasting hydrodynamic regimes was determined by pre-settlement or post-settlement processes. The two sites were 1.5 km apart in the vicinity of Woods Hole, Mass., USA. Quantitative plankton samples were taken twice weekly from December 1997 to May 1998 at a nearby site as an estimate of nearshore larval abundance. The presence of S. balanoides nauplii was noted, and cyprids were enumerated and measured. Larval settlement at the two sites [Gansett Point, Buzzards Bay (GP) and Little Harbor, Vineyard Sound (LH)] was estimated from examination of replicate settlement plates exposed for 2 or 3 days throughout the settlement season, and from replicate plots on marked rock quadrats at each site. On both plates and rocks settled cyprids and metamorphs were enumerated. Space occupancy on unmanipulated rock quadrats by all stages from cyprids to adult barnacles was also examined. Settlement occurred from 2 January to 20 May, and major settlement peaks coincided with peaks in pelagic cyprid concentration at LH, but not at GP. Space occupied by juvenile barnacles was close to zero up until late February despite substantial settlement prior to that. At LH, juvenile barnacle cover was zero at the end of the observations; all settlement failed. Almost 100% of settled cyprids failed to metamorphose within 2 days from late January to late March. Then the proportion metamorphosing increased sharply coinciding with a sudden increase of 3°C in water temperature. Observed site differences in space occupancy by juvenile barnacles suggest that while cyprid supply is a necessary condition for barnacle settlement, other factors affecting metamorphosis of settled cyprids and early juvenile mortality determine recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号