首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Factors that contribute to the successful establishment of invasive species are often poorly understood. Propagule size is considered a key determinant of establishment success, but experimental tests of its importance are rare. We used experimental colonies of the invasive Argentine ant (   Linepithema humile ) that differed both in worker and queen number to test how these attributes influence the survivorship and growth of incipient colonies. All propagules without workers experienced queen mortality, in contrast to only 6% of propagules with workers. In small propagules (10–1,000 workers), brood production increased with worker number but not queen number. In contrast, per capita measures of colony growth decreased with worker number over these colony sizes. In larger propagules ( 1,000–11,000 workers), brood production also increased with increasing worker number, but per capita brood production appeared independent of colony size. Our results suggest that queens need workers to establish successfully but that propagules with as few as 10 workers can grow quickly. Given the requirements for propagule success in Argentine ants, it is not surprising how easily they spread via human commerce.  相似文献   

2.
As a self-organizing entity, an ant colony must divide a limited number of workers among numerous competing functions. Adaptive patterns of labor allocation should vary with colony need across each annual cycle, but remain almost entirely undescribed in ants. Allocation to foraging in 55 field colonies of the Florida harvester ant (Pogonomyrmex badius) followed a consistent annual pattern over 4 years. Foragers preceded larvae in spring and peaked during maximal larval production in summer (0.37). In spring, proportion foraging increased due to an increase in forager number and reduction in colony size, and in late summer, it decreased as colony size increased through new worker birth and a loss of ~3 % of foragers per day. The removal of 50 % of the forager population revealed that, at the expense of larval survival, colonies did not draw workers from other castes to fill labor gaps. To determine if labor allocation was age specific, whole colonies were marked with cuticle color-specific wire belts and released, and each cohort's time to first foraging was noted. Workers that eclosed in summer alongside sexual alates darkened quickly and became foragers at ~43 days of age, whereas autumn-born workers required 200 or more days to do so. Following colony reproduction, these long-lived individuals foraged alongside short-lived, summer-born sisters during the next calendar year. Therefore, the large-scale, predictable patterns of labor allocation in P. badius appear to be driven by bimodal worker development rate and age structure, rather than worker responsiveness to changes in colony demand.  相似文献   

3.
The evolution of colony size in social insects is influenced by both extrinsic and colony-intrinsic factors. An important intrinsic trait, per-capita productivity, often declines in larger colonies. This pattern, known as Michener’s paradox, can limit the growth of insect societies. In this study, we first describe this problem, survey its occurrence across different ant species, and present a case study of eight cavity-dwelling ants with very small colony sizes. In these species, colonies might never reach sizes at which per-capita productivity decreases. However, in six out of the eight focal species, per-capita productivity did decline with increasing size, in accordance with other studies on per-capita productivity in ants. Several mechanisms, such as resource availability or nest-site limitation, may explain the decrease in per-capita productivity with increases in colony size in our focal species. In these central-place foragers, the individual foraging mode is expected to lead to an increase in travel time as colonies grow. We suggest that polydomy, the concomitant occupation of several nest sites, could serve as a potential strategy to overcome this limitation. Indeed, for one species, we show that polydomy can help to circumvent the reduction in productivity with increasing colony size, suggesting that limited resource availability causes the observed decrease in per-capita productivity. Finally, we discuss the influence of other factors, such as the nesting ecology and colony homeostasis, on the evolution of colony size in these cavity-dwelling ants.  相似文献   

4.
Here, we study distribution of workload and its relationship to colony size among worker ants of Temnothorax albipennis, in the context of colony emigrations. We find that one major aspect of workload, number of items transported by each worker, was more evenly distributed in larger colonies. By contrast, in small colonies, a small number of individuals perform most of the work in this task (in one colony, a single ant transported 57% of all items moved in the emigration). Transporters in small colonies carried more items to the new nest per individual and achieved a higher overall efficiency in transport (more items moved per transporter and unit time). Our results suggest that small colonies may be extremely dependent on a few key individuals. In studying colony organisation and division of labour, the amount of work performed by each individual, not just task repertoire (which tasks are performed at all), should be taken into account.  相似文献   

5.
In some mutualisms, a plant or insect provides a food resource in exchange for protection from herbivores, competitors or predators. This food resource can benefit the consumer, but the relative importance of different mechanisms responsible for this benefit is unclear. We used a colony-level simulation model to test the relative importance of increased larval production, increased worker foraging and increased worker survival for colony growth of fire ants, Solenopsis invicta, that consume plant-based foods. Increased food for larvae had the largest effect on colony growth of S. invicta followed by decreased worker mortality. Increased foraging rate had a small effect in the simulation model but data from a small laboratory experiment and another published study suggest that plant-based foods have little or no effect on foraging rates of S. invicta. Colony growth steadily increased the longer plant-based food was available and colonies were most responsive to plant-based food in the early summer (i.e., June). Our results demonstrate that population level simulation modeling can be a useful tool for examining the ecology of mutualistic interactions and the mechanisms through which species interact.  相似文献   

6.
Summary In a population of the monogynous slave-making ant Harpagoxenus sublaevis in S.E. Sweden, the mean proportion of dry weight investment in queens was 0.54. This result differed significantly from 0.75 but not from 0.5, matching the prediction from the genetic relatedness hypothesis of sex ratio applied to slave-makers, given (as confirmed by this study) single mating of queens, population-wide mate competition, and relatively low levels of worker male production. Sex investment appeared unaffected by resource availability. In the same 47 colony population sample, fertile slave-maker workers were found in every queenless colony (ca. 30% of all colonies), and in 58% of queen-right colonies. Fertile workers occurred at a significantly higher frequency in the queenless colonies (19.2%) than in the queenright ones (9.8%), confirming that queenless conditions promote worker fertility. Fertile and sterile workers were similar in size. Electrophoretic allozyme analysis of ants from 49 colonies showed that: 1) queens mated singly; 2) female nestmates were full sisters (their regression coefficient of relatedness (±SE) was 0.735±0.044); 3) inbreeding did not occur; 4) queen and worker siblings were not genetically differentiated. Worker male production in queenright colonies was neither confirmed nor ruled out by the genetic data. However, production data indicated that queenless workers produced between 4.4 and 21.6% of all males. Overall colony productivity was largely determined by slave number, itself positively correlated with the number of slave-maker workers. There was an abrupt switch from all worker to all sexual production as colony size rose, as predicted by life history models. In queenright colonies, fertile slave-makers did not discernibly reduce colony productivity. Such workers occurred in queenright colonies with most slaves, suggesting they exploited energetic surpluses. Worker reproduction in H. sublaevis therefore appears to have greater influence at the level of individual behaviour than at colony or population level.  相似文献   

7.
Senescence, the decline in physiological and behavioral function with increasing age, has been the focus of significant theoretical and empirical research in a broad array of animal taxa. Preeminent among invertebrate social models of aging are ants, a diverse and ecologically dominant clade of eusocial insects characterized by reproductive and sterile phenotypes. In this review, we critically examine selection for worker life span in ants and discuss the relationship between functional senescence, longevity, task performance, and colony fitness. We did not find strong or consistent support for the hypothesis that demographic senescence in ants is programmed, or its corollary prediction that workers that do not experience extrinsic mortality die at an age approximating their life span in nature. We present seven hypotheses concerning how selection could favor extended worker life span through its positive relationship to colony size and predict that large colony size, under some conditions, should confer multiple and significant fitness advantages. Fitness benefits derived from long worker life span could be mediated by increased resource acquisition, efficient division of labor, accuracy of collective decision-making, enhanced allomaternal care and colony defense, lower infection risk, and decreased energetic costs of workforce maintenance. We suggest future avenues of research to examine the evolution of worker life span and its relationship to colony fitness and conclude that an innovative fusion of sociobiology, senescence theory, and mechanistic studies of aging can improve our understanding of the adaptive nature of worker life span in ants.  相似文献   

8.
In many social insects, including bumblebees, the division of labor between workers relates to body size, but little is known about the factors influencing larval development and final size. We confirmed and extend the evidence that in the bumblebee Bombus terrestris the adult bee body size is positively correlated with colony age. We next performed cross-fostering experiments in which eggs were switched between incipient (before worker emergence) and later stage colonies with workers. The introduced eggs developed into adults similar in size to their unrelated nestmates and not to their same-age full sisters developing in their mother colony. Detailed observations revealed that brood tending by the queen decreases, but does not cease, in young colonies with workers. We next showed that both worker number and the queen presence influenced the final size of the developing brood, but only the queen influence was mediated by shortening developmental time. In colonies separated by a queen excluder, brood developmental time was shorter in the queenright compartment. These findings suggest that differences in body size are regulated by the brood interactions with the queen and workers, and not by factors inside the eggs that could vary along with colony development. Finally, we developed a model showing that the typical increase in worker number and the decrease in brood contact with the queen can account for the typical increase in body size. Similar self-organized social regulation of brood development may contribute to the optimization of growth and reproduction in additional social insects.  相似文献   

9.
Many organisms live in crowded groups where social density affects behavior and fitness. Social insects inhabit nests that contain many individuals where physical interactions facilitate information flow and organize collective behaviors such as foraging, colony defense, and nest emigration. Changes in nest space and intranidal crowding can alter social interactions and affect worker behavior. Here, I examined the effects of social density on foraging, scouting, and polydomy behavior in ant colonies—using the species Temnothorax rugatulus. First, I analyzed field colonies and determined that nest area scaled isometrically with colony mass—this indicates that nest area changes proportionally with colony size and suggests that ants actively control intranidal density. Second, laboratory experiments showed that colonies maintained under crowded conditions had greater foraging and scouting activities compared to the same colonies maintained at a lower density. Moreover, crowded colonies were significantly more likely to become polydomous. Polydomous colonies divided evenly based on mass between two nests but distributed fewer, heavier workers and brood to the new nests. Polydomous colonies also showed different foraging and scouting rates compared to the same colonies under monodomous conditions. Combined, the results indicate that social density is an important colony phenotype that affects individual and collective behavior in ants. I discuss the function of social density in affecting communication and the organization of labor in social insects and hypothesize that the collective management of social density is a group level adaptation in social insects.  相似文献   

10.
Insect social parasites, like other parasites, may benefit from inhibiting their host from reproducing (complete or partial parasitic castration) because they can then exploit more of the host’s resources for their own reproduction. In particular, social parasites that kill or expel the host queen need to prevent host workers from reproducing; this is a common worker response to the absence of their queen. Indeed, host workers would benefit from detecting the presence of the parasite and investing in direct and indirect fitness. Studying whether and how social parasites control host worker reproduction can provide information about the degree of integration of the parasite in the host colony and help identify factors regulating workers’ reproductive decisions in social insects. We investigated whether the paper wasp social parasite, Polistes sulcifer, suppresses Polistes dominula (host) worker reproduction as efficiently as the dominant host female does in queen-right colonies by comparing worker reproductive efforts in parasitized and non-parasitized (control) colonies. Our results show that 6 weeks after usurpation of their colony by the social parasite, parasitized workers (1) had more developed ovaries than control workers and (2) laid more eggs as soon as the opportunity arose. This reproductive readiness of parasitized workers was not apparent 2 weeks after colony usurpation. This suggests that P. dominula workers have evolved means to react to social parasitism, as occurs in some ants, and that the parasite has only limited control over host reproduction.  相似文献   

11.
Dominance interactions determine reproductive status in many animal societies, including many cooperatively breeding vertebrates and eusocial Hymenoptera without queen-worker dimorphism. Typically, the dominant individual monopolises reproduction, and subordinates behave like helpers. In Dinoponera queenless ants, workers are totipotent females and can potentially reproduce, yet only the top-ranking worker actually reproduces. Individual workers ranked immediately below the dominant breeder worker (gamergate) are hopeful reproductives. Whether or not a worker benefits from joining the hierarchy of high-ranking workers depends on the trade-off between the probability of becoming dominant and reproducing directly, and the colony-level cost of an additional lazy high ranker. Inclusive fitness models predict that the length of the dominance hierarchy depends on relatedness, colony size, and the linearity of the hierarchy. Here, we test the effect of colony size by comparing hierarchy length among three species that differ in colony size (Dinoponera australis: median=14 workers, quartiles=10 and 19 workers; D. gigantea: median=41, quartiles=33 and 74; D. quadriceps: median=78, quartiles=55 and 90). Although difficulties in defining where the hierarchy ends hamper comparisons, the results are in broad agreement with the predictions. Hierarchies are close to the predicted lengths and are longer in species with larger colonies (one, three and three workers in the three species in order from smallest to largest colony vs two, three and four predicted). These conclusions are further supported by determining Kokko and Lindström's λ index of skew, which is smaller (i.e. characteristic of a longer hierarchy) in species with larger colonies.  相似文献   

12.
Queen mating frequency of the facultatively polygynous ant Acromyrmex echinatior was investigated by analysing genetic variation at an (AG)n repeat microsatellite locus in workers and sexuals of 20 colonies from a single Panamanian population. Thirteen colonies were found to be monogynous, 5 colonies contained multiple queens, whereas the queen number of 2 colonies remained unresolved. Microsatellite genotypes indicated that 12 out of 13 queens were inseminated by multiple males (polyandry). The mean queen mating frequency was 2.53 and the mean genetically effective paternity frequency was 2.23. These values range among the highest found in ants, and the results are in keeping with the high mating frequencies reported for other species of leafcutter ants. Consistent skew in the proportional representation of different patrilines within colonies was found, and this remained constant in two consecutive samples of offspring. Dissections showed that all examined queens from multiple-queen colonies were mated egg-layers. The mean relatedness value among nestmate workers in polygynous colonies was lower than that for monogynous colonies. No diploid males were detected in a sample of 70 genotyped males. Worker production of males was detected in one queenless colony. We discuss our findings in relation to known patterns of multiple maternity and paternity in other eusocial Hymenoptera. Received: 2 September 1998 / Received in revised form: 3 February 1999 / Accepted: 7 February 1999  相似文献   

13.
The genetic basis of morphological traits in social insects remains largely unexplored. This is even true for individual body size, a key life-history trait. In the social insects, the size of reproductive individuals affects dispersal decisions, so that small size in queens is often associated with reduced dispersal, and large size with long-range dispersal and independent colony founding. Worker size is connected to division of labour when workers specialize in certain tasks according to their size. In many species, variation in worker size has been shown to increase colony performance. In this study, we present the first evidence of an additive genetic component to queen size in ants, using maternal half sib analysis. We also compared intra-colony size variation in colonies with high (queen doubly mated) versus low (queen singly mated) genetic variability. We found a high and significant heritability (h2=0.51) for queen size in one of the two study years, but not in the other. Size variation among queens was greater in colonies headed by a doubly mated queen in one of the study years, but not in the other. This indicates that genetic factors can influence queen size, but that environmental factors may override these under some circumstances. The heritability for worker size was low (h2=0.09) and non-significant. Increased genetic diversity did not increase worker size variation in the colonies. Worker size appeared largely environmentally determined, potentially allowing colonies to adjust worker size ratios to current conditions.Communicated by J. Heinze  相似文献   

14.
Limitation of a necessary resource can affect an organism’s investment into growth and reproduction. Pogonomyrmex harvester ants store vast quantities of seeds in their nests that are thought to buffer the ants when external resources are not available. This research uses externally controlled food availability to examine how resource shortage affects colony investment, resource use, and resource distribution within the nest. Colonies were either starved or supplemented with resources for 2 months, beginning at the onset of reproductive investment and ending immediately before nuptial flights. Fed colonies invested more in overall production, proportionally more in reproduction relative to growth and in female reproductives relative to males. Stored seeds in starved colonies did not buffer production in this study. However, worker fat reserves were depleted in starved colonies, indicating that fat reserves fuel the spring bout of production. In starved colonies, worker fat reserves were depleted evenly throughout the nest, distributing the burden of starvation on all workers regardless of caste and age. A reallocation of diploid eggs into female workers rather than reproductives best explains the observed change in sex ratio investment between treatments. The redistribution of resources into growth relative to reproduction in starved colonies is consistent with life history theory for long-lived organisms, switching from current to future reproduction when resources are scarce.  相似文献   

15.
Social insect colonies can be expected to forage at rates that maximize colony fitness. Foraging at higher rates would increase the rate of worker production, but decrease adult survival. This trade-off has particular significance during the founding stage, when adults lost are not replaced. Prior work has shown that independent-founding wasps rear the first workers rapidly by foraging at high rates. Foraging rates decrease after those individuals pupate, presumably reducing the risk of foundress death. In the swarm-founding wasps, colony-founding units have many workers, making colony death by forager attrition less likely. Do swarm-founding wasps show similar shifts in foraging rates during the founding stage? We measured foraging rates of the swarm-founding wasp, Polybia occidentalis at four stages of colony development. At each stage, foraging rates correlated with the number of larvae present, which, in the founding stages, correlated with the number of cells in the new nest. Thus, foraging rates appear to be demand-driven, with the level of demand in the founding stage set by the size of nest that is constructed. During the founding stage, foraging rates per larva were high initially, suggesting that colonies minimize the development times of larvae early in the founding stage. Later in the stage, foraging rates decreased, which would reduce worker mortality until new workers eclose. This pattern is similar to that shown for independent-founding wasps and likely results from conflicting pressures to maximize colony growth and minimize the risk of colony death by forager attrition.  相似文献   

16.
Summary This paper examines the characteristics of the spontaneous acivity levels of individual worker ants of Leptothorax allardycei and explores the influence of spontaneous worker activity on colony activity patterns. While there are substantial differences among workers in the characteristics of their spontaneous activity, all of the variation occurs within the colony. There are virtually no differences in the levels of spontaneous activity between colonies. Variation among workers is due to age; workers decline exponentially in their probability of becoming active, p a ,at a rate of -0.02 per day. I built computer models under four different sets of assumptions about the spontaneous activity patterns of workers, and performed simulations to test the ability of colonies of simulated workers to synchronize their movement activity. The most realistic results are obtained with models in which workers already have an underlying propensity to oscillate and which interact with one another to produce Type 1 phase resetting. The simulations generate predictions concerning the ability of colonies to synchronize, the most significant of which is that the average age of workers in a colony is very important in determining the extent of colony synchrony, while the distribution of ages is not.  相似文献   

17.
Chemical communication is crucial for the organization of social insect colonies. However, with the heavy use of one communication modality, problems may arise such as the interference of different types of information. This study investigated how information about fertility and colony membership is integrated in the ant Camponotus floridanus. We introduced into mature, queenright colonies (a) the nestmate queen, (b) a nestmate worker, (c) a foreign, high-fertility queen, (d) a foreign, low-fertility queen, and (e) a foreign worker. As expected, workers did not attack their nestmate queen or a nestmate worker but responded aggressively to foreign workers and foreign, low-fertility queens. Surprisingly, workers did not attack foreign, high-fertility queens. Chemical analysis demonstrated that the cuticular hydrocarbon profile of C. floridanus encodes information about fertility status in queens and workers and colony membership in workers. We suggest that ants respond to this information in the cuticular hydrocarbon profile: individuals with strong fertility signals are accepted regardless of their colony membership, but individuals without strong fertility signals are tolerated only if their cuticular hydrocarbon profile matches that of colony members. Learning how social insects respond to multiple types of information presented together is critical to our understanding of the recognition systems that permit the complex organization of social insect colonies.  相似文献   

18.
The genetic organization of colonies of the subterranean termite Reticulitermes flavipes in two subpopulations in Massachusetts was explored using five polymorphic allozymes and double-strand conformation polymorphism (DSCP) analysis of the mitochondrial control region. Empirically obtained estimates of worker relatedness and F-statistics were compared with values generated by computer simulations of breeding schemes to make inferences about colony organization. In one study site (G), worker genotypes indicated the presence of a mixture of colonies headed by monogamous outbred primary reproductives and colonies headed by inbreeding neotenic reproductives, both colony types having limited spatial ranges. A second site (S) was dominated by several large colonies with low relatedness among nestmates. Mixed DSCP haplotypes in three colonies indicated that nestmates had descended from two or three unrelated female reproductives. Computer simulations of breeding schemes suggested that positive colony inbreeding coefficients at site S resulted from either commingling of workers from different nests or different colonies. Such an exchange of workers between nests corresponds to the multiple-site nesting lifetype of many subterranean termites and resembles colony structure in polycalic Formica ants. Our study demonstrates considerable variation in R. flavipes colony structure over a small spatial scale, including colonies headed by monogamous outbred primary reproductives, colonies containing multiple inbred neotenic reproductives and large polydomous colonies containing the progeny of two or more unrelated queens, and suggests that the number of reproductives and nestmate relatedness change with colony age and size.  相似文献   

19.
Division of labour among workers is central to the organisation and ecological success of insect societies. If there is a genetic component to worker size, morphology or task preference, an increase in colony genetic diversity arising from the presence of multiple breeders per colony might improve division of labour. We studied the genetic basis of worker size and task preference in Formica selysi, an ant species that shows natural variation in the number of mates per queen and the number of queens per colony. Worker size had a heritable component in colonies headed by a doubly mated queen (h 2=0.26) and differed significantly among matrilines in multiple-queen colonies. However, higher levels of genetic diversity did not result in more polymorphic workers across single- or multiple-queen colonies. In addition, workers from multiple-queen colonies were consistently smaller and less polymorphic than workers from single-queen colonies. The relationship between task, body size and genetic lineage appeared to be complex. Foragers were significantly larger than brood-tenders, which may provide energetic or ergonomic advantages to the colony. Task specialisation was also often associated with genetic lineage. However, genetic lineage and body size were often correlated with task independently of each other, suggesting that the allocation of workers to tasks is modulated by multiple factors. Overall, these results indicate that an increase in colony genetic diversity does not increase worker size polymorphism but might improve colony homeostasis.  相似文献   

20.
Division of reproductive labor in insect societies is often based on worker self-restraint and both queen and worker policing. Workers of many hitherto studied wasps, bees and ants do not lay eggs in the presence of a queen. However, it is presently unclear how far these observations in a few select clades can be generalized. We investigated if and how queens maintain a reproductive monopoly in colonies of the elongate twig ant, Pseudomyrmex gracilis, a member of the previously unstudied ant subfamily Pseudomyrmecinae. Colonies are usually headed by a single, singly mated queen (monogyny, monandry). Workers therefore would be more closely related to males produced by other workers (r?=?0.375) than to the sons of queens (r?=?0.25). Nevertheless, workers appear to refrain from laying male-destined eggs in the presence of the queen. In queenless conditions, workers form dominance hierarchies by antennal boxing, and only one or a few high-ranking individuals readily begin to lay eggs. When returned into a queenright colony, egg-laying workers are immediately bitten, stung and expelled or killed by other workers. While the composition of cuticular hydrocarbons clearly differed between castes, it less clearly reflected worker ovarian development. An association with worker ovarian development that would allow workers to monitor the reproductive status of nestmates could only be tentatively postulated for certain substances. Our study broadens our knowledge about reproductive conflict in social Hymenoptera and shows that worker sterility in the presence of a queen is more common in monogynous, monandrous ants than expected from relatedness alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号