首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Air–water flows at hydraulic structures are commonly observed and called white waters. The free-surface aeration is characterised by some intense exchanges of air and water leading to complex air–water structures including some clustering. The number and properties of clusters may provide some measure of the level of particle-turbulence and particle–particle interactions in the high-velocity air–water flows. Herein a re-analysis of air–water clusters was applied to a highly aerated free-surface flow data set (Chanson and Carosi, Exp Fluids 42:385–401, 2007). A two-dimensional cluster analysis was introduced combining a longitudinal clustering criterion based on near-wake effect and a side-by-side particle detection method. The results highlighted a significant number of clustered particles in the high-velocity free-surface flows. The number of bubble/droplet clusters per second and the percentage of clustered particles were significantly larger using the two-dimensional cluster analysis than those derived from earlier longitudinal detection techniques only. A number of large cluster structures were further detected. The results illustrated the complex interactions between entrained air and turbulent structures in skimming flow on a stepped spillway, and the cluster detection method may apply to other highly aerated free-surface flows.  相似文献   

2.
In hydraulic structures, free-surface aeration is commonly observed: i.e., the white waters. The air bubble entrainment may be localised (hydraulic jumps, plunging jets) or continuous along an interface (water jets, chutes). Despite recent advances, there are some basic concerns about the extrapolation of laboratory results to large size prototype structures. Herein the basic air bubble entrainment processes are reviewed and the relevant dynamic similarities are discussed. Traditionally, physical studies are conducted using a Froude similitude which implies drastically smaller laboratory Reynolds numbers than in the corresponding prototype flows. Basic dimensional analyses are developed for both singular and interfacial aeration processes. The results are discussed in the light of systematic investigations and they show that the notion of scale effects is closely linked with the selection of relevant characteristic air–water flow properties. Recent studies of local air–water flow properties highlight that turbulence levels, entrained bubble sizes and interfacial areas are improperly scaled based upon a Froude similitude even in large-size models operating with the so defined Reynolds numbers ρ w × q w/μ w up to 5 E+5. In laboratory models, the dimensionless turbulence levels, air–water interfacial areas and mass transfer rates are drastically underestimated.  相似文献   

3.
Surface waves and roughness in self-aerated supercritical flow   总被引:1,自引:1,他引:1  
In high-velocity open channel flows, free-surface aeration is commonly observed. The effects of surface waves on the air–water flow properties are tested herein. The study simulates the air–water flow past a fixed-location phase-detection probe by introducing random fluctuations of the flow depth. The present model yields results that are close to experimental observations in terms of void fraction, bubble count rate and bubble/droplet chord size distributions. The results show that the surface waves have relatively little impact on the void fraction profiles, but that the bubble count rate profiles and the distributions of bubble and chord sizes are affected by the presence of surface waves.  相似文献   

4.
With the re-evaluation and revision of a number of design floods, several embankment overtopping protection systems have been developed and a common technique is the construction of a stepped spillway on the downstream slope. For such moderate slope stepped channels, detailed air–water flow measurements were performed in a large facility with a focus on the rate of energy dissipation, flow resistance, air–water interfacial areas and re-aeration rates. Past and present experimental results showed a significant aeration of the flow. The median dimensionless residual head was about 3 × dc for the 21.8° sloping chute and smaller than that for flatter slopes (θ = 3.4° and 15.9°). The flow resistance results yielded an equivalent Darcy friction factor of about 0.25 implying a larger flow resistance for the 21.8° slope angle than for smaller slope angles. The re-aeration rate was deduced from the integration of the mass transfer equation using measured air–water interfacial areas and air–water flow velocities. The results suggested an increasing re-aeration rate with increasing rate of energy dissipation. The stepped invert contributed to intense turbulence production, free-surface aeration and large interfacial areas. The experimental data showed however some distinctive seesaw pattern in the longitudinal distribution of air–water flow properties with a wave length of about two step cavities. While these may be caused by the interactions between successive adjacent step cavities and their interference with the free-surface, the existence of such “instabilities” implies that the traditional concept of normal flow might not exist in skimming flows above moderate-slope stepped spillways.  相似文献   

5.
The design floods of several reservoirs were recently re-evaluated and the revised spillway outflow could result in dam overtopping with catastrophic consequences for some embankment structures. Herein a physical study was performed on flat and pooled stepped spillways with a slope typical of embankments $(\uptheta = 26.6^{\circ })$ and four stepped configurations were tested: a stepped spillway with flat horizontal steps, a pooled stepped spillway, and two stepped spillways with in-line and staggered configurations of flat and pooled steps. The focus of the study was on the flow aeration, air–water flow properties, cavity flow processes, and energy dissipation performances. The results demonstrated the strong aeration of the flow for all configurations. On the in-line and staggered configurations of flat and pooled steps, the flow was highly three-dimensional. The residual head and energy dissipation rates at the stepped chute downstream end were calculated based upon the detailed air–water flow properties. The results showed that the residual energy was the lowest for the flat stepped weir. The data for the stepped spillway configuration with in-line and staggered configurations of flat and pooled steps showed large differences in terms of residual head in the transverse direction. Altogether the present results showed that, on a $26.6^{\circ }$ slope stepped chute, the designs with in-line and staggered configurations of flat and pooled steps did not provide any advantageous performances in terms of energy dissipation and flow aeration, but they were affected by three-dimensional patterns leading to some flow concentration.  相似文献   

6.
Experimental investigation of bubbly flow and turbulence in hydraulic jumps   总被引:1,自引:1,他引:0  
Many environmental problems are linked to multiphase flows encompassing ecological issues, chemical processes and mixing or diffusion, with applications in different engineering fields. The transition from a supercritical flow to a subcritical motion constitutes a hydraulic jump. This flow regime is characterised by strong interactions between turbulence, free surface and air–water mixing. Although a hydraulic jump contributes to some dissipation of the flow kinetic energy, it is also associated with increases of turbulent shear stresses and the development of turbulent eddies with implications in terms of scour, erosion and sediment transport. Despite a number of experimental, theoretical and numerical studies, there is a lack of knowledge concerning the physical mechanisms involved in the diffusion and air–water mixing processes within hydraulic jumps, as well as on the interaction between the free-surface and turbulence. New experimental investigations were undertaken in hydraulic jumps with Froude numbers up to Fr = 8.3. Two-phase flow measurements were performed with phase-detection conductivity probes. Basic results related to the distributions of void fraction, bubble frequency and mean bubble chord length are presented. New developments are discussed for the interfacial bubble velocities and their fluctuations, characterizing the turbulence level and integral time scales of turbulence representing a “lifetime” of the longitudinal bubbly flow structures. The analyses show good agreement with previous studies in terms of the vertical profiles of void fraction, bubble frequency and mean bubble chord length. The dimensionless distributions of interfacial velocities compared favourably with wall-jet equations. Measurements showed high turbulence levels. Turbulence time scales were found to be dependent on the distance downstream of the toe as well as on the distance to the bottom showing the importance of the lower (channel bed) and upper (free surface) boundary conditions on the turbulence structure.  相似文献   

7.
In an open channel, a change from a supercritical to subcritical flow is a strong dissipative process called a hydraulic jump. Herein some new measurements of free-surface fluctuations of the impingement perimeter and integral turbulent time and length scales in the roller are presented with a focus on turbulence in hydraulic jumps with a marked roller. The observations highlighted the fluctuating nature of the impingement perimeter in terms of both longitudinal and transverse locations. The results showed further the close link between the production and detachment of large eddies in jump shear layer, and the longitudinal fluctuations of the jump toe. They highlighted the importance of the impingement perimeter as the origin of the developing shear layer and a source of vorticity. The air–water flow measurements emphasised the intense flow aeration. The turbulent velocity distributions presented a shape similar to a wall jet solution with a marked shear layer downstream of the impingement point. The integral turbulent length scale distributions exhibited a monotonic increase with increasing vertical elevation within 0.2 < Lz/d1 < 0.8 in the shear layer, where Lz is the integral turbulent length scale and d1 the inflow depth, while the integral turbulent time scales were about two orders of magnitude smaller than the period of impingement position longitudinal oscillations.  相似文献   

8.
A new method of introducing the free-surface effects in the calculation of turbulent open-channel flows using the amplitude of the free-surface fluctuation is proposed along with a modeling method of the equation for the free-surface fluctuation. It can be incorporated in two-equation models like k-or k-type models by introducing the damping factor to represent the interaction of the eddies with the fluctuating free-surface. Test calculations for fully developed flows and those over backward-facing step indicate good agreement with direct numerical simulation results as well as experimental results.  相似文献   

9.
The hydrodynamics of super- and sub-critical shallow uniform free-surface flows are assessed using laboratory experiments aimed at identifying and quantifying flow structure at scales larger than the flow depth. In particular, we provide information on probability distributions of horizontal velocity components, their correlation functions, velocity spectra, and structure functions for the near-water-surface flow region. The data suggest that for the high Froude number flows the structure of the near-surface layer resembles that of two-dimensional turbulence with an inverse energy cascade. In contrast, although large-scale velocity fluctuations were also present in low Froude number flow its behaviour was different, with a direct energy cascade. Based on our results and some published data we suggest a physical explanation for the observed behaviours. The experiments support Jirka’s [Jirka GH (2001) J Hydraul Res 39(6):567–573] hypothesis that secondary instabilities of the base flow may generate large-scale two-dimensional eddies, even in the absence of transverse gradients in the time-averaged flow properties.  相似文献   

10.
Gravity driven flows on inclines can be caused by cold, saline or turbid inflows into water bodies. Another example are cold downslope winds, which are caused by cooling of the atmosphere at the lower boundary. In a well-known contribution, Ellison and Turner (ET) investigated such flows by making use of earlier work on free shear flows by Morton, Taylor and Turner (MTT). Their entrainment relation is compared here with a spread relation based on a diffusion model for jets by Prandtl. This diffusion approach is suitable for forced plumes on an incline, but only when the channel topography is uniform, and the flow remains supercritical. A second aspect considered here is that the structure of ET’s entrainment relation, and their shallow water equations, agrees with the one for open channel flows, but their depth and velocity scales are those for free shear flows, and derived from the velocity field. Conversely, the depth of an open channel flow is the vertical extent of the excess mass of the liquid phase, and the average velocity is the (known) discharge divided by the depth. As an alternative to ET’s parameterization, two sets of flow scales similar to those of open channel flows are outlined for gravity currents in unstratified environments. The common feature of the two sets is that the velocity scale is derived by dividing the buoyancy flux by the excess pressure at the bottom. The difference between them is the way the volume flux is accounted for, which—unlike in open channel flows—generally increases in the streamwise direction. The relations between the three sets of scales are established here for gravity currents by allowing for a constant co-flow in the upper layer. The actual ratios of the three width, velocity, and buoyancy scales are evaluated from available experimental data on gravity currents, and from field data on katabatic winds. A corresponding study for free shear flows is referred to. Finally, a comparison of mass-based scales with a number of other flow scales is carried out for available data on a two-layer flow over an obstacle. Mass-based flow scales can also be used for other types of flows, such as self-aerated flows on spillways, water jets in air, or bubble plumes.  相似文献   

11.
A hydraulic jump is a turbulent shear flow with a free-surface roller. The turbulent flow pattern is characterised by the development of instantaneous three-dimensional turbulent structures throughout the air–water column up to the free surface. The length and time scales of the turbulent structures are key information to describe the turbulent processes, which is of significant importance for the improvement of numerical models and physical measurement techniques. However, few physical data are available so far due to the complexity of the measurement. This paper presents an investigation of a series of characteristic turbulent scales for hydraulic jumps, covering the length and time scales of turbulent flow structures in bubbly flow, on free surface and at the impingement point. The bubbly-flow turbulent scales are obtained for Fr = 7.5 with 3.4 × 104 < Re < 1.4 × 105 in both longitudinal and transverse directions, and are compared with the free-surface scales. The results highlight three-dimensional flow patterns with anisotropic turbulence field. The turbulent structures are observed with different length and time scales respectively in the shear flow region and free-surface recirculation region. The bubbly structures next to the roller surface and the free-surface fluctuation structures show comparable length and time scales, both larger than the scales of vortical structures in the shear flow and smaller than the scales of impingement perimeter at the jump toe. A decomposition of physical signals indicates that the large turbulent scales are related to the unsteady motion of the flow in the upper part of the roller, while the high-frequency velocity turbulence dominates in the lower part of the roller. Scale effects cannot be ignored for Reynolds number smaller than 4 × 104, mainly linked to the formation of large eddies in the shear layer. The present study provides a comprehensive assessment of turbulent scales in hydraulic jump, including the analyses of first data set of longitudinal bubbly-flow integral scales and transverse jump toe perimeter integral scales.  相似文献   

12.
The concentration of dissolved oxygen is an important indicator of water quality because aquatic life lives on the dissolved oxygen in the water. Aeration can increase dissolved oxygen when levels become deficient. Hydraulic structures can significantly improve dissolved oxygen levels by creating turbulent conditions where small air bubbles are carried into the bulk of the flow. Recent researches have focused on developing measurement and predictive techniques for oxygen transfer at hydraulic structures to maintain and enhance water quality. However, reviewing existing studies on aeration performance of hydraulic structures, it seems that there are not too many studies on venturi aeration. The present paper shows applications of venturi principle to water aeration systems. The aeration characteristics of venturi nozzle, venturi conduit and venturi weir are analyzed. The results indicate that venturi aeration might contribute significantly to air entrainment and aeration efficiency. Therefore, venturi device can be used as highly effective aerator in aeration processes.  相似文献   

13.
Seepage flow is an agent related to the transport and dispersion of contamination in groundwater. Steady two-dimensional seepage flow is governed by Laplace’s equation, for which several solution techniques are available. Because computations are complex from a practical point of view, simplified models encompass the Dupuit-Forchheimer approach assuming a horizontal flow. However this approach is inaccurate in seepage problems involving steep drawdowns. In this research, a new theoretical model for 2D seepage flow is proposed based on Fawer’s theory for curved flows Castro-Orgaz (Environ Fluid Mech 10(3):2971–2310, 2010), from which a second-order equation results describing the seepage surface. From this development, a numerical solution for the rectangular dam problem based on the second-order model is presented, whereas a simple first-order equation is found to describe flow to drains under a uniform rainfall. The results of this new model are compared with the full 2D solution of Laplace’s equation for typical test cases, resulting in an excellent agreement.  相似文献   

14.
Hydraulic jumps have complex flow structures, characterised by strong turbulence and large air contents. It is difficult to numerically predict the flows. It is necessary to bolster the existing computer models to emphasise the gas phase in hydraulic jumps, and avoid the pitfall of treating the phenomenon as a single-phase water flow. This paper aims to improve predictions of hydraulic jumps as bubbly two-phase flow. We allow for airflow above the free surface and air mass entrained across it. We use the Reynolds-averaged Navier–Stokes equations to describe fluid motion, the volume of fluid method to track the interface, and the k–ε model for turbulence closure. A shear layer is shown to form between the bottom jet flow and the upper recirculation flow. The key to success in predicting the jet flow lies in formulating appropriate bottom boundary conditions. The majority of entrained air bubbles are advected downstream through the shear layer. Predictions of the recirculation region’s length and air volume fraction within the layer are validated by available measurements. The predictions show a linear growth of the shear layer. There is strong turbulence at the impingement, and the bulk of the turbulence kinetic energy is advected to the recirculation region via the shear layer. The predicted bottom-shear-stress distribution, with a peak value upstream of the toe of the jump and a decaying trend downstream, is realistic. This paper reveals a significant transient bottom shear stress associated with temporal fluctuations of mainly flow velocity in the jump. The prediction method discussed is useful for modelling hydraulic jumps and advancing the understanding of the complex flow phenomenon.  相似文献   

15.
Settlement responses of barnacle (Balanus amphitrite) cyprids to boundary-layer flows were examined in laboratory flume-experiments. The leading-edge configuration of flat plates was altered in order to manipulate flows without changing surface topography or freestream velocity. Settlement along the plates correlated strongly with downstream gradients in shear stress. Analyses of video images taken during the experiments indicate that cyprids first contact plates in regions where plate-ward advection is high, and subsequent exploratory movement along the plate is oriented with flow direction at the plate surface. After exploration, cyprids reject a surface more frequently in a fast flow (10 cm s–1 freestream velocity) than in a slow flow (5 cm s–1), but rejection occurs in shear stresses well below the threshold that would prevent attachment and exploration. A higher rejection rate does not result in lower settlement, however, since contact rate is higher in fast than slow flows. The movement of cyprids in flow thus appears to be a passive transport process during the initial contact stage of settlement, but an active behavioral response to flow direction and shear stress during later stages of exploration and attachment.  相似文献   

16.
A hydraulic jump is characterized by strong energy dissipation and mixing, large-scale turbulence, air entrainment, waves, and spray. Despite recent pertinent studies, the interaction between air bubbles diffusion and momentum transfer is not completely understood. The objective of this paper is to present experimental results from new measurements performed in a rectangular horizontal flume with partially developed inflow conditions. The vertical distributions of the void fraction and the air bubbles count rate were recorded for inflow Froude number Fr 1 in the range from 5.2 to 14.3. Rapid detrainment process was observed near the jump toe, whereas the structure of the air diffusion layer was clearly observed over longer distances. These new data were compared with previous data generally collected at lower Froude numbers. The comparison demonstrated that, at a fixed distance from the jump toe, the maximum void fraction C max increases with the increasing Fr 1. The vertical locations of the maximum void fraction and bubble count rate were consistent with previous studies. Finally, an empirical correlation between the upper boundary of the air diffusion layer and the distance from the impingement point was derived.  相似文献   

17.
When wind-induced water waves appear over the free-surface flows such as natural rivers and artificial channels, large amounts of oxygen gas and heat are transported toward the river bed through the interface between water and wind layers. In contrast, a bed region is a kind of turbulent boundary layer, in which turbulence generation and its transport is promoted by the production of bed shear stress. In particular, coherent hairpin vortices, together with strong ejection events toward the outer part of the layer, promote mass and momentum exchanges between the inner and outer layers. It is inferred that such a near-bed turbulence may be influenced significantly by these air–water interfacial fluctuations accompanied with free-surface velocity shear and wind-induced water waves. However, these wind effects on the wall-turbulence structure are less understood. To address these exciting and challenging topics, we conducted particle imagery velocimetry (PIV) measurements in open-channel flows combined with air flows, and furthermore the present measured data allows us to investigate the effects of air–water interactions on turbulence structure through the whole depth region.  相似文献   

18.
This paper presents a mathematical model to investigate type II profile of suspension concentration distribution (i.e., the concentration profile where the maximum concentration appears at some distance above the bed surface) in a steady, uniform turbulent flow through open-channels. Starting from the mass and momentum conservation equations of two-phase flow, a theoretical model has been derived. The distribution equation is derived considering the effects of fluid lift force, drag force, particle inertia, particle–particle interactions, particle velocity fluctuations and drift diffusion. The equation is solved numerically and is compared with available experimental data as well as with other models existing in the literature. Good agreement between the observed value and computed result, and minimum error in comparison to other models indicate that the present model can be applied in predicting particle concentration distribution for type II profile for a wide range of flow conditions. The proposed model is also able to show the transition from type I profile to type II profile.  相似文献   

19.
Free-surface flows over patchy vegetation are common in aquatic environments. In this study, the hydrodynamics of free-surface flow in a rectangular channel with a bed of rigid vegetation-like cylinders occupying half of the channel bed was investigated and interpreted by means of laboratory experiments and numerical simulations. The channel configurations have low width-to-depth aspect ratio (1.235 and 2.153). Experimental results show that the adjustment length for the flow to be fully developed through the vegetation patch in the present study is shorter than observed for large-aspect-ratio channels in other studies. Outside the lateral edge of the vegetation patch, negative velocity gradient (\(\partial \overline{u}/\partial z < 0\)) and a local velocity maximum are observed in the vertical profile of the longitudinal velocity in the near-bed region, corresponding to the negative Reynolds stress (\(- \overline{{u^{\prime}w^{\prime}}} < 0\)) at the same location. Assuming coherent vortices to be the dominant factor influencing the mean flow field, an improved Spalart–Allmaras turbulence model is developed. The model improvement is based on an enhanced turbulence length scale accounting for coherent vortices due to the effect of the porous vegetation canopy and channel bed. This particular flow characteristic is more profound in the case of high vegetation density due to the stronger momentum exchange of horizontal coherent vortices. Numerical simulations confirmed the local maximum velocity and negative gradient in the velocity profile due to the presence of vegetation and bed friction. This in turn supports the physical interpretation of the flow processes in the partly obstructed channel with vegetation patch. In addition, the vertical profile of the longitudinal velocity can also be explained by the vertical behavior of the horizontal coherent vortices based on a theoretical argument.  相似文献   

20.
Recent theoretical research indicates that dynamics of shallow flows can be strongly affected by waves developing on the free surface. In this study a shallow wake with an oblique pressure wave behind a model of a tree-centered emergent bar is investigated in a gravel-bed river. A bar was constructed in a shallow river reach with nearly uniform flow. The structure of flow was assessed with an array of velocimeters. Flow visualization with a solute of fluorescent dye complemented the measurements and provided qualitative information on the wake behavior. This study indicates that quantitative criteria for shallow wakes classification developed in laboratory setups are not straightforward in explaining the field results. According to the wake stability criteria, the expected dynamics for examined wake flow is a vortex street (VS) type. Contrary to this expectation, measurements and visualizations in this study show that mean momentum differential and turbulent vortices in the wake decrease stronger than expected in VS type and therefore the wake should be classified as unsteady bubble type with a weak downstream instability. Analysis of velocity differential dynamics in the examined shallow wake suggests that the bed friction alone is insufficient to explain the inconsistency of VS criterion whereas accounting for advective fluxes driven by inhomogeneous pressure field leads to a correct prediction of the wake behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号