首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compared to other cereals, rice has particular strong As accumulation. Therefore, it is very important to understand As uptake and translocation among different genotypes. A field study in Chenzhou city, Hunan province of China, was employed to evaluate the effect of arsenic-contaminated soil on uptake and distribution in 34 genotypes of rice (including unpolished rice, husk, shoot, and root). The soil As concentrations ranged from 52.49 to 83.86 mg kg?1, with mean As concentration 64.44 mg kg?1. The mean As concentrations in rice plant tissues were different among the 34 rice genotypes. The highest As concentrations were accumulated in rice root (196.27–385.98 mg kg?1 dry weight), while the lowest was in unpolished rice (0.31–0.52 mg kg?1 dry weight). The distribution of As in rice tissue and paddy soil are as follows root ? soil > shoot > husk > unpolished rice. The ranges of concentrations of inorganic As in all of unpolished rice were from 0.26 to 0.52 mg kg?1 dry weight. In particular, the percentage of inorganic As in the total As was more than 67 %, indicating that the inorganic As was the predominant species in unpolished rice. The daily dietary intakes of inorganic As in unpolished rice ranged from 0.10 to 0.21 mg for an adult, and from 0.075 to 0.15 mg for a child. Comparison with tolerable daily intakes established by FAO/WHO, inorganic As in most of unpolished rice samples exceeded the recommended intake values. The 34 genotypes of rice were classified into four clusters using a criteria value of rescaled distance between 5 and 10. Among the 34 genotypes, the genotypes II you 416 (II416) with the lowest enrichment of As and the lowest daily dietary intakes of inorganic As could be selected as the main cultivar in As-contaminated field.  相似文献   

2.
Temporal variations and correlations between radial oxygen loss (ROL), iron (Fe) plaque formation, cadmium (Cd) and arsenic (As) accumulation were investigated in two rice cultivars at four different growth stages based upon soil pot and deoxygenated solution experiments. The results showed that there were significant differences in ROL (1.1–16 μmol O2 plant?1 h?1), Fe plaque formation (4,097–36,056 mg kg?1), Cd and As in root tissues (Cd 77–162 mg kg?1; As 49–199 mg kg?1) and Fe plaque (Cd 0.4–24 mg kg?1; As 185–1,396 mg kg?1) between these growth stages. ROL and Fe plaque increased dramatically from tillering to ear emergence stages and then were much reduced at the grain-filling stage. Furthermore, significantly positive correlations were detected between ROL and concentrations of Fe, Cd and As in Fe plaque. Our study indicates that increased Fe plaque forms on rice roots at the ear emergence stage due to the increased ROL. This stage could therefore be an important period to limit the transfer and distribution of Cd and As in rice plants when growing in soils contaminated with these toxic elements.  相似文献   

3.
This study investigated two digestion methods (USEPA 3051: microwave, HNO3 or Hossner: hot plate, HF–H2SO4–HClO4) for heavy metals analysis in contaminated soil surrounding Mahad AD'Dahab mine, Saudi Arabia. Moreover, contamination metal levels were estimated. The Hossner and USEPA 3051 methods showed, respectively, average total contents of 17.2 and 18.1 mg kg?1 for Cd, 11.6 and 10.6 mg kg?1 for Co, 45.7 and 34.7 mg kg?1 for Cr, 1030 and 1100 mg kg?1 for Cu, 33,300 and 27,400 mg kg?1 for Fe, 963 and 872 mg kg?1 for Mn, 33.2 and 22.8 mg kg?1 for Ni, 791 and 782 mg kg?1for Pb, and 6320 and 2870 mg kg?1 for Zn. A lack of significant differences and a high correlation coefficient (>90%) for Cd, Pb and Cu between the two digestion methods suggest that the total-recoverable method (USEPA 3051) may be equivalent to the total-total digestion method (Hossner) for determining these metals in the studied soil. However, significantly higher concentrations of Cr, Fe, Ni and Zn were found by the Hossner method comapred with the USEPA 3051 method. The soil samples have very or extremely high levels of Zn, Cu, Cd and Pb contamination, indicating very high potential ecological risk.  相似文献   

4.
Paddy fields near a mining site in north part of Guangdong Province, PR China, were severely contaminated by heavy metals as a result of wastewater irrigation from the tailing pond. The following clean water irrigation for 2 decades produced marked rinsing effect, especially on Pb and Zn. Paddy fields continuously irrigated with wastewater ever since mining started (50 years) had 1,050.0 mg kg?1 of Pb and 810.3 mg kg?1 of Zn for upper 20 cm soil, in comparison with 215.9 mg kg?1 of Pb and 525.4 mg kg?1 of Zn, respectively, with clean water irrigation for 20 years. Rinsing effect mainly occurred to a depth of upper 40 cm, of which the soil contained highest metals. Copper and Cd in the farmlands were also reduced due to clean water irrigation. Higher availability of Pb might partly account for more Pb transferred from the tailing pond to the farmland and also more Pb removal from the farmland as a result of clean water irrigation. Neither rice in the paddy field nor dense weeds in the uncultivated field largely took up the metals. However, they might contribute to activate metals differently, leading to a different purification extent. Rotation of rice and weed reduced metal retention in the farmland soil, in comparison with sole rice growth. Harvesting of rice grain (and partially rice stalk) only contributed small fraction of total amount of removed metal. In summary, heavy metal in paddy field resulted from irrigation of mining wastewater could be largely removed by clean water irrigation for sufficient time.  相似文献   

5.
Rice samples (n = 482) harvested for 2010–2012 in South Korea were analyzed for zearalenone content by high-performance liquid chromatography and fluorescence detection. The exposure of the Korean populations was assessed by a deterministic approach. Because the proportion of non-detectable results was >80% in white rice but less than <60% in brown rice, the zearalenone levels for white rice were reported as 0.52 µg kg?1 as lower bound and 2.54 µg kg?1 as upper bound, while for brown rice the middle bound value was 13.9 µg kg?1. The average dietary intake of zearalenone from white and brown rice by the Korean population was estimated to be 1.5 ng kg?1 body weight (bw) day?1 each. For heavy consumers, the average intakes were 18.5 and 10.1 ng kg?1 bw day?1, respectively. The age groups with the highest zearalenone intake were 1–2-year-old children for white rice and 3–6-year-old children for brown rice. Overall, the dietary exposure of the Korean population to zearalenone from white and brown rice was found to be lower than the provisional maximum tolerable daily intake of 0.5 μg kg?1 bw day?1.  相似文献   

6.
This study investigated whether selenium species in wheat grains could be altered by exposure to different combinations of nitrogen (N) and sulphur (S) fertilisers in an agronomic biofortification experiment. Four Australian wheat cultivars (Mace, Janz, Emu Rock and Magenta) were grown in a glasshouse experiment and exposed to 3 mg Se kg?1 soil as selenate (SeVI). Plants were also exposed to 60 mg N kg?1 soil as urea and 20 mg S kg?1 soil as gypsum in a factorial design (N + S + Se; N + Se; S + Se; Se only). Plants were grown to maturity with grain analysed for total Se concentrations via ICP-MS and Se species determined via HPLC-ICP-MS. Grain Se concentrations ranged from 22 to 70 µg Se g?1 grain (dry mass). Selenomethionine (SeMet), Se-methylselenocystine (MeSeCys), selenohomolanthionine (SeHLan), plus a large concentration of uncharacterised Se species were found in the extracts from grains. SeMet was the major Se species identified accounting for between 9 and 24 µg Se g?1 grain. Exposure to different N and S fertiliser combinations altered the SeMet content of Mace, Janz and Emu Rock grain, but not that of Magenta. MeSeCys and SeHLan were found in far lower concentrations (<4 µg Se g?1 grain). A large component of the total grain Se was uncharacterisable (>30 % of total grain Se) in all samples. When N fertiliser was applied (with or without S), the proportion of uncharacterisable Se increased between 60 and 70 % of the total grain Se. The data presented here indicate that it is possible to alter the content of individual Se species in wheat grains via biofortification combined with manipulation of N and S fertiliser regimes. This has potential significance in alleviating or combating both Se deficiency and Se toxicity effects in humans.  相似文献   

7.
The current study examined the anthropogenic accumulation and natural decrease in metal concentrations in agricultural soils following organic waste application. Three common organic wastes, including municipal sewage sludge, alcohol fermentation processing sludge, and pig manure compost (PMC), were applied annually to an agricultural soil under field conditions over 7 years (1994–2000) at a rate of 12.5, 25, and 50 ton ha?1 year?1 and the soil accumulation of three metals of concern (Cu, Pb, and Zn) was monitored. Subsequently, organic waste amendments ceased and the experimental plots were managed using conventional fertilization for another 10 years (2001–2010) and the natural decrease in metal concentrations monitored. Although Cu and Zn concentrations in all experimental plots did not exceed the relevant guideline values (150 mg kg?1 for Cu and 300 mg kg?1 for Zn), significant increases in metal concentrations were observed from cumulative application of organic wastes over 7 years. For instance, PMC treatment resulted in an increase in Cu and Zn from 9.8 and 72 mg kg?1 to 108.2 and 214.3 mg kg?1, respectively. In addition, the natural decrease in Cu and Zn was not significant as soils amended with PMC showed only a 16 and 19 % decline in Cu and Zn concentrations, respectively, even 10 years after amendment ceased. This research suggested that more attention must be paid during production of organic waste-based amendments and at the application stage.  相似文献   

8.
Surface and subsurface soil samples contaminated with crude oils were collected from an impacted site at Bodo City in the Niger Delta, Nigeria, after a field reconnaissance survey. An uncontaminated soil sample collected 100 m from the impacted site, but within the same geographical area, was used as a control. Trace elements such as, As, Cu, Cr, Cd, Fe, Pb, Ba, Ni, V, Hg and cation-exchange capacity constituents of the contaminated and uncontaminated soils were determined by atomic absorption spectroscopy. Trace element concentrations were: Cu, 0.5–13.4 mg kg? 1; Cr, 0.2–0.8 mg kg? 1; Fe, 6.2–8.7 mg kg? 1; Ba 80.0–108.0 mg kg? 1; Ni, 0.6–4.8 mg kg? 1; and V, 4.0–9.4 mg kg? 1; cation-exchange capacity ranged from 43.6 to 57.2 mg kg? 1 in surface and subsurface soils. Results showed that eigenvalues for the two first principal components represent up to 49% of the total variance. A positive correlation of the first principal component with Cu, Cr and cation-exchange capacity shows pollution from oil spillage, while a positive correlation of the second principal component with Cr, Fe, V, and dissolved oxygen (DO) shows both oil pollution and allochthonous inputs.  相似文献   

9.
10.
To provide information on reclamation of multi-heavy metal polluted soils with conception of phytostabilization, a field survey on the uptake and accumulation of potentially toxic elements such as antimony (Sb), arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) in colonized plant species around the world’s largest antimony mine area, China, was conducted. Samples including leaves and shoots (including roots and stems) of colonized plants as well as rhizospheric soils were collected from eight sampling zones in the studied area. The results showed that the contents of Cu, Zn, and Pb in rhizospheric soils below plants were comparable to the corresponding background values of Hunan province, otherwise Sb, Cd, and As contents were extremely high (17–106, 17–87, and 3–7 times of the corresponding background values). The highest concentration of Sb was found in Aster subulatus (410 mg kg?1); Cd, As, and Zn were in Herba bidentis bipinnatae (10.9, 264, and 265 mg kg?1, respectively); and Cu was in Artemisia lavandulaefolia (27.1 mg kg?1). It also exhibited that all the contents of As in leaves were several times of those in shoots of plants, Cd and other heavy metals showed in a similar pattern in several studied species, implying that the uptake route of these heavy metals via foliar might contribute to the accumulation. With high bioconcentration factors of heavy metals (more than 1, except for Zn), together with the growth abundance, Herba bidentis bipinnatae was considered as the most suitable colonized species for phytostabilization of the multi-heavy metal pollution in soils on this antimony mine area.  相似文献   

11.
This paper documents the concentration of total arsenic and individual arsenic species in four soft-bottom benthic polychaetes (Perenereis cultifera, Ganganereis sootai, Lumbrinereis notocirrata and Dendronereis arborifera) along with host sediments from Sundarban mangrove wetland, India. An additional six sites were considered exclusively for surface sediments for this purpose. Polychaetes were collected along with the host sediments and measured for their total arsenic content using inductively coupled plasma mass spectrometry. Arsenic concentrations in polychaete body tissues varied greatly, suggesting species-specific characteristics and inherent peculiarities in arsenic metabolism. Arsenic was generally present in polychaetes as arsenate (AsV ranges from 0.16 to 0.50 mg kg?1) or arsenite (AsIII ranges from 0.10 to 0.41 mg kg?1) (30–53 % as inorganic As) and dimethylarsinic acid (DMAV <1–25 %). Arsenobetaine (AB < 16 %), and PO4-arsenoriboside (8–48 %) were also detected as minor constituents, whilst monomethylarsonic acid (MAV) was not detected in any of the polychaetes. The highest total As (14.7 mg kg?1 dry wt) was observed in the polychaete D. arborifera collected from the vicinity of a sewage outfall in which the majority of As was present as an uncharacterised compound (10.3 mg kg?1 dry wt) eluted prior to AB. Host sediments ranged from 2.5 to 10.4 mg kg?1 of total As. This work supports the importance of speciation analysis of As, because of the ubiquitous occurrence of this metalloid in the environment, and its variable toxicity depending on chemical form. It is also the first work to report the composition of As species in polychaetes from the Indian Sundarban wetlands.  相似文献   

12.
In marine ecosystems, benthic organisms are really important because they are the first step in the transfer of contaminants from environment to biota. To this end, this study focused on biological assays with the amphipod Corophium orientale exposed to two different molecules of arsenic: arsenate (AsV), the most abundant form in sediments, and dimethyl-arsinate (DMA), expected to be moderately toxic as an intermediate in the process of detoxification. The toxicity of arsenic compounds was measured after exposure to three different matrices: water, spiked natural sediment and inert spiked quartz sand. LC50 values were calculated for each exposure, and the results confirmed the highest toxicity of AsV, in addition to underlining the importance of matrix of exposure. Water exposure was the matrix which presented the highest toxicity for inorganic arsenic (AsV LC50=3.51 mg L?1 vs DMA LC50=54.65 mg L?1), spiked natural sediment demonstrated its capability to chelate arsenate toxicity (AsV LC50=34.27 mg kg?1 vs. DMA LC50=52.19 mg kg?1) and spiked quartz sand presented intermediate values for AsV (LC50=25.26 mg kg?1), whereas for DMA a lower toxicity was registered (LC50=872.35 mg kg?1). This study can provide some useful data linked with chemical speciation of arsenic and exposure matrix, for improving the correct management of contaminated sediment.  相似文献   

13.
Due to its potential toxic properties, metal mobilization is of major concern in areas surrounding Pb–Zn mines. In the present study, metal contents and toxicity of soils, aqueous extracts from soils and mine drainage waters from an abandoned F–Ba–Pb–Zn mining area in Osor (Girona, NE Spain) were evaluated through chemical extractions and ecotoxicity bioassays. Toxicity assessment in the terrestrial compartment included lethal and sublethal endpoints on earthworms Eisenia fetida, arthropods Folsomia candida and several plant species, whereas aquatic tests involved bacteria Vibrio fischeri, microalgae Raphidocelis subcapitata and crustaceans Daphnia magna. Total concentrations of Ba (250–5110 mg kg?1), Pb (940 to >5000 mg kg?1) and Zn (2370–11,300 mg kg?1) in soils exceeded intervention values to protect human health. Risks for the aquatic compartment were identified in the release of drainage waters and in the potential leaching and runoff of metals from contaminated soils, with Cd (1.98–9.15 µg L?1), Pb (2.11–326 µg L?1) and Zn (280–2900 µg L?1) concentrations in filtered water samples surpassing US EPA Water Quality Criteria (2016a, b). Terrestrial ecotoxicity tests were in accordance with metal quantifications and identified the most polluted soil as the most toxic. Avoidance and reproduction tests with earthworms showed the highest sensitivity to metal contamination. Aquatic bioassays performed in aqueous extracts from soils confirmed the results from terrestrial tests and also detected toxic effects caused by the mine drainage waters. Algal growth inhibition was the most sensitive aquatic endpoint. In view of the results, the application of a containment or remediative procedure in the area is encouraged.  相似文献   

14.
Mine wastes and tailings are considered hazardous to human health because of their potential to generate large quantities of highly toxic emissions of particulate matter (PM). Human exposure to As and other trace metals in PM may occur via inhalation of airborne particulates or through ingestion of contaminated dust. This study describes a laboratory-based method for extracting PM2.5–10 (coarse) and PM2.5 (fine) particles from As-rich mine waste samples collected from an historical gold mining region in regional, Victoria, Australia. We also report on the trace metal and metalloid content of the coarse and fine fraction, with an emphasis on As as an element of potential concern. Laser diffraction analysis showed that the proportions of coarse and fine particles in the bulk samples ranged between 3.4–26.6 and 0.6–7.6 %, respectively. Arsenic concentrations were greater in the fine fraction (1680–26,100 mg kg?1) compared with the coarse fraction (1210–22,000 mg kg?1), and Co, Fe, Mn, Ni, Sb and Zn were found to be present in the fine fraction at levels around twice those occurring in the coarse. These results are of particular concern given that fine particles can accumulate in the human respiratory system. Our study demonstrates that mine wastes may be an important source of metal-enriched PM for mining communities.  相似文献   

15.
In this study, we investigated the concentrations of ten trace elements (Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg, and As) and their trophodynamics in a benthic food chain of Deer Island, Northern Yellow Sea. The concentrations of Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg, and As in the food chain ranged from 3.2 to 23.2, from 71 to 227, from 7.4 to 45.6, from 0.44 to 5.80, from 0.73 to 7.60, from 0.14 to 1.65, from 0.68 to 6.70, from 0.08 to 1.86, from 0.08 to 1.18, and from 0.24 to 3.92 mg kg?1 dry weight, respectively. Among these trace elements, the linear regression between the log-transformed concentrations of Hg and Cd and δ15N values showed statistically significant increase (p<0.05) with the slopes of 0.134 and 0.144, indicating biomagnification of Hg and Cd occurred in the benthic food chain of Deer Island. While the linear regression for other eight trace elements (Cu, Zn, Mn, Se, Ni, Cr, Pb and As) were characterised by extensive scatter with non-significant correlation coefficients (R 2=0.002–0.235) and slopes (p=0.079–0.875), indicating there were not biomagnified or biodiluted of these trace elements.  相似文献   

16.
The estimated daily intakes (EDIs) of six trace elements (Cu, Zn, Pb, Cd, Hg, and As) in vegetables (leafy vegetable, i.e., bok choy, fruit vegetables, i.e., cucumber and tomato, and other categories, i.e., mushroom, kidney bean, and potato), cereals (rice and wheat flour), and meats (pork, mutton, and beef) most commonly consumed by adult inhabitants of Qiqihar, Northeastern China, were determined to assess the health status of local people. The average EDIs of Cu, Zn, Pb, Cd, Hg, and As were with 20.77 μg (kg bw)?1 day?1 of Cu, 288 μg (kg bw)?1 day?1 of Zn, 2.01 μg (kg bw)?1 day?1 of Pb, 0.41 μg (kg bw)?1 day?1 of Cd, 0.01 μg (kg bw)?1 day?1 of Hg, and 0.52 μg (kg bw)?1 day?1 of As, respectively, which are below the daily allowance recommended by FAO/WHO. However, the maximum EDIs of Pb and Cd were 4.56 μg (kg bw)?1 day?1 and 1.68 μg (kg bw)?1 day?1, respectively, which are above the recommended levels [i.e., 3.58 μg (kg bw)?1 day?1 for Pb and 1.0 μg (kg bw)?1 day?1 for Cd] by FAO/WHO. This finding indicates that the potential health risk induced by daily ingestion of Pb and Cd for the local residents should receive a significant concern. Similarly, we detected elevated Pb and Cd concentrations, i.e., with average of 13.58 and 0.60 mg kg?1 dw, respectively, in the adult scalp hairs. Consumption of rice, potato, bok choy, and wheat flour contributed to 75 and 82% of Pb and Cd daily intake from foodstuffs. Nevertheless, human scalp hair is inappropriate biological material for determination of the nutritional status of trace elements in this region.  相似文献   

17.
Concentrations of eight trace metals (TMs) in road dust (RD) (particles?<?25 μm) from urban areas of Xinxiang, China, were determined by inductively coupled plasma mass spectrometry. The geometric mean concentrations of Zn, Mn, Pb, As, Cu, Cr, Ni and Cd were 489, 350, 114, 101, 60.0, 39.7, 31.6, and 5.1 mg kg?1, respectively. When compared with TM levels in background soil, the samples generally display elevated TM concentrations, except for Cr and Mn, and for Cd the enrichment value was 69.6. Spatial variations indicated TMs in RD from park path would have similar sources with main roads, collector streets and bypasses. Average daily exposure doses of the studied TMs were about three orders of magnitude higher for hand-to-mouth ingestion than dermal contact, and the exposure doses for children were 9.33 times higher than that for adults. The decreasing trend of calculated hazard indexes (HI) for the eight elements was As?>?Pb?>?Cr?>?Mn?>?Cd?>?Zn?>?Ni?>?Cu for both children and adults.  相似文献   

18.
Trace metal contents (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn) have been measured in 27 surface sediment samples collected from Kongsfjorden, Svalbard, Norwegian Arctic. The analyses yielded concentration values (in mg kg?1) of 0.13–0.63 for Cd, 11.89–21.90 for Co, 48.65–81.84 for Cr, 21.26–36.60 for Cu, 299.59–683.48 for Mn, 22.43–35.39 for Ni, 10.68–36.59 for Pb, 50.28–199.07 for Zn and 8.09–65.34 for Hg (in ng g?1), respectively. Relative cumulative frequency method has been used to define the baseline values of these metals, which (in mg kg?1) were 0.14 for Cd, 13.56 for Co, 57.86 for Cr, 25.14 for Cu, 364.08 for Mn, 26.22 for Ni, 17.46 for Pb, 70.49 for Zn and 9.76 for Hg (in ng g?1), respectively. The enrichment factor analysis indicated that Hg showed some extent of anthropogenic pollution, while Pb, Zn and Cd showed limited anthropogenic contamination in the study areas.  相似文献   

19.
Ecological restoration, using tolerant plant species and nutrient additions, is a low-cost option to decrease environmental risks associated with mine tailings. An attempt was previously made to establish such a vegetation cover on an abandoned tailings facility in Southern Ireland. Historically, the tailings site has been prone to dusting and is a potential source of contamination to the surrounding environment. The site was examined to determine the success of the previous restoration plan used to revegetate the site and to determine its suitability for further restoration. Three distinct floristic areas were identified (grassland, poor grassland and bare area) based on herbage compositions and elemental analysis. Surface and subsurface samples were taken to characterise tailings from within these areas of the tailings site. The pH of bare surface tailings (pH, 2.7) was significantly more acidic (p < 0.5) than in other areas. Additionally, negligible net neutralising potential resulted in the tailings being hostile to plant growth. Total metal concentrations in tailings were high (c. 10,000 mg kg?1 for Pb and up to 20,000 mg kg?1 for Zn). DTPA-extractable Zn and Pb were 16 and 11 % of the total amount, respectively. Metal content in grasses growing on some areas of the tailings were elevated and demonstrated the inability of the tailings to support sustainable plant growth. Due to the inherently hostile characteristics of these areas, future restoration work will employ capping with a barrier layer.  相似文献   

20.
Levels of Pb, Ni, Cr, Cu, Zn, and Cd in the glass screens (GS) and printed wiring boards (PWBs) of obsolete computer monitors (OCMs) were determined by flame atomic absorption spectrophotometry (FAAS) following standard digestion. Metal concentrations (mg kg?1) in GS were in the following ranges (medians in brackets): Pb ND – 3100 (46), Cd 0.5–2.6 (0.8), Cr ND – 18.7 (3.1), and Zn 8.1–600 (37) and in PWBs (mg kg?1): Pb 34,600 ± 17,000, Cd 11 ± 9, Cr 59 ± 45, Zn 15,900 ± 7800, Cu79,000 ± 22,600, and Ni 3200 ± 2500. In GS, the levels of the six metals were lower than their total threshold limit concentrations (TTLC), except for Pb with a TTLC of 1000 mg kg?1 in 10% of the samples. In the PWBs, the TTLC of Pb and Cu (2500 mg kg?1) was exceeded many fold. For Zn (5000 mg kg?1) and Ni (2000 mg kg?1); they were exceeded by 90% and 65%, respectively. For OCMs manufactured in 2001 and later, Pb and Zn levels in GS and Cr, Zn, and Ni in PWBs were significantly reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号