首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seagrasses may acclimate to environmental heterogeneity through phenotypic plasticity. In contrast to leaf morphology, which has been a central point in seagrass acclimation studies, plasticity in leaf biomechanics and fibre content is poorly understood, despite being crucial in plant ecological performance, especially regarding physical forces. We hypothesised that mechanical traits (e.g. breaking force, strength, toughness, and stiffness) and fibre content of seagrass leaves vary as morphology does under differential environments. Cymodocea nodosa was seasonally monitored at three locations around Cádiz Bay (southern Spain) with hydrodynamic regime as the most noticeable difference between them. Leaves showed plasticity in both morphology and mechanical traits, with wave-exposed individuals presenting short but extensible and tough leaves. Leaf fibre content was invariant along the year and with little spatial variability. Cross-sectional area rather than material properties or fibre content differentiates leaf mechanical resistance. Seagrass capacity to thrive under a range of mechanical forces may be dictated by their plasticity in morpho-biomechanical traits, a key element for the hydrodynamical performance and, hence, for species colonisation and distribution.  相似文献   

2.
The photoacclimation capacity of the seagrass Cymodocea nodosa was evaluated considering temporal (i.e. seasonal) and spatial (i.e. depth and within-leaf position) factors of variation. Changes along the leaf were measured in a population growing along a depth gradient (from intertidal to subtidal) in Cadiz Bay (Southern Spain) from 2004 to 2005. Photoacclimation was evaluated by photosynthesis (PE curves), pigment content and leaf morphology. Plants of Cymodocea nodosa showed large physiological and morphological plasticity (mean %CV = 35.8 ± 3.4) according to the three factors considered. Seasonal patterns appeared for photosynthesis, respiration, pigment content and morphology. Nevertheless, seasonal patterns were not consistent with depth or leaf portions. The resulting data set offered different information depending on the analysis conducted; when only one factor (season, depth or leaf portion) was considered, some tendencies observed in the 3-way full design were masked. Accordingly, considering spatio–temporal variability is crucial when describing photoacclimation and estimating productivity in seagrass meadows.  相似文献   

3.
4.
5.
This study aimed to gain insight on patterns of spatial variability of seagrass epiphytes of both leaves and of rhizomes in three different habitats, continental coasts, offshore banks and islands. Moreover, we tried to discriminate between habitat-dependant variability and scale-dependant variability of Posidonia oceanica epiphytic assemblages. Results showed the absence of significant differences in the structure of assemblages of epiphytes both on leaves and on rhizomes among continental coasts, offshore banks and islands, even if the patterns of spatial variability changed among habitats. In fact, although a high variability at small scales appeared a constant pattern in epiphytic assemblages, large-scale variability resulted higher in continental coasts and offshore banks than in islands. In conclusion, epiphytic assemblages of Posidonia oceanica appear homogeneous among habitats, showing a similar structure and species composition in the same geographic area. On the contrary, differences between meadows appeared linked to local differences in environmental factors that are more evident in habitats influenced by human disturbance. An erratum to this article can be found at  相似文献   

6.
The structure, diversity and temporal distribution of the infaunal polychaetes associated with Cymodocea nodosa meadows were studied in Tenerife (Canary Islands). The samples were collected monthly throughout a year, to depths of 13–16 m. The sediment was extracted by means of PVC cores, in which four layers were separated (i.e. 0–5 cm, 5–10 cm, 10–20 cm and 20–30 cm). A total of 1,167 polychaete specimens, belonging to 69 taxa were collected, representing one of the most dominant groups in the benthic assemblage throughout the entire year. The most common families were Syllidae, Paraonidae and Spionidae, both in terms of abundance and species richness. The dominant species were Streptosyllis bidentata, Aricidea assimilis and Exogone parahomoseta mediterranea, representing also the only constant species throughout the year. The highest values of species richness, diversity, equitability and abundance of polychaetes occurred in September. The multifactorial analysis of abundances (i.e. cluster analysis and non-metric, multi-dimensional scaling) indicated temporal segregation of the samples from July, August and September (i.e. the warmest months) with respect to those from the rest of the year, due to structural differences in the assemblage. Polychaete species have been found to a depth of up to 30 cm in the sediment. Nevertheless, most of them (89%) occurred in the upper 5 cm of the sediment, with an increase of specimens in deeper layers in February (i.e. due to sporadic episodes of higher hydrodynamics). To compare the vertical distribution of polychaetes, additional core samples were collected in two seagrass meadows (i.e. C. nodosa and Ruppia cirrhosa) at Ebros Delta (NW Mediterranean); these were separated into five layers (i.e. 0–5 cm, 5–10 cm, 10–15 cm, 15–20 cm, 20–25 cm). The results obtained for the R. cirrhosa meadow (98% of the polychaetes within the upper 5 cm) agree with those for the Canarian C. nodosa meadow, while the polychaetes reached up to 15 cm depth in the Mediterranean C. nodosa meadow (i.e. ~39% between 0 and 5 cm, ~41% between 5 and 10 cm, ~20% between 10 and 15 cm). Our results indicated that the structural characteristics of the assemblages appeared to be more strongly controlled by the combined characteristics of the sediment (i.e. lack of oxygen, granulometry and degree of compaction) than by the seagrass species building the meadow.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

7.
We estimated and tested variability of seagrass leaf-associated epifaunal assemblages at a range of scales. Sampling was performed in 36 seagrass (Zostera marina) meadows within three regions along the Swedish west coast following a hierarchical design (samples separated by 10 s m, km or 100 km). Results showed strongest variability (43–81%) at the intermediate amongst-meadow (km) scale using biomass of functional categories, while considering taxa composition the within-meadow (10 s m) scale contributed most to variability (60%). Using functional categories, we found that embayment exposure and seagrass shoot density were the most important predictor variables explaining part of the variability in biomass of suspension feeders (bivalves and barnacles) and grazers. In contrast, variability in epifaunal taxa composition was predicted mainly by sediment chemistry, substratum coverage and geographical positioning. Our findings suggest that models to develop predictive power and mechanistic understanding should focus on variables and processes varying at small and intermediate scales rather than those varying at larger scales.  相似文献   

8.
Ocean acidification, as a result of increased atmospheric CO2, is predicted to lower the pH of seawater to between pH 7.6 and 7.8 over the next 100 years. The greatest changes are expected in polar waters. Our research aimed to examine how echinoid larvae are affected by lower pH, and if effects are more pronounced in polar species. We examined the effects of lowered pH on larvae from tropical (Tripneustes gratilla), temperate (Pseudechinus huttoni, Evechinus chloroticus), and a polar species (Sterechinus neumayeri) in a series of laboratory experiments. Larvae were reared in a range of lower pH seawater (pH 6.0, 6.5, 7.0, 7.5, 7.7, 7.8 and ambient), adjusted by bubbling CO2 gas. The effect of pH on somatic and skeletal growth, calcification index, development and survival were quantified, while SEM examination of the larval skeleton provided information on the effects of seawater pH on the fine-scale skeletal morphology. Lowering pH resulted in a decrease in survival in all species, but only below pH 7.0. The size of larvae were reduced at lowered pH, but the external morphology (shape) was unaffected. Calcification of the larval skeleton was significantly reduced (13.8–36.9% lower) under lowered pH, with the exception of the Antarctic species, which showed no significant difference. SEM examination revealed a degradation of the larval skeletons of Pseudechinus and Evechinus when grown in reduced pH. Sterechinus and Tripneustes showed no apparent difference in the skeletal fine structure under lowered pH. The study confirms the need to look beyond mortality as a single endpoint when considering the effects of ocean acidification that may occur through the 21st century, and instead, look for a suite of more subtle changes, which may indirectly affect the functioning of larval stages.  相似文献   

9.
Species of the reef goby genus Gnatholepis exhibit enormous geographic ranges with little evidence of population segregation detectable based on mitochondrial DNA. To determine if genetic differentiation is evident with more rapidly evolving markers, seven microsatellite loci were screened from the species Gnatholepis anjerensis and G. scapulostigma and population segregation was tested among fish from across the South Pacific. Both AMOVA and pairwise F ST analyses showed that, in concordance with previous mitochondrial results, most genetic variance occurs within individual populations, as population differentiation is evident only over the largest distances (>3,700 km). This result is contrasted with previous studies demonstrating that despite their relatively long larval periods, some gobiid fishes exhibit population differentiation on small (<100 km) geographic scales. Coalescence analysis showed that current Pacific populations of these species originated in the Pleistocene, presumably related to sea level fluctuations associated with episodes of glaciation. However, rate analysis based on a phylogeny of Gnatholepis species indicates that the species themselves are much older, consistent with a complex history of rapid, short-term population contractions and expansions, with corresponding rapid dispersal.  相似文献   

10.
《Ecological modelling》2003,161(3):213-238
Anumerical deterministic model for a seagrass ecosystem (Zostera noltii meadows) has been developed for the Thau lagoon. It involves both above- and belowground seagrass biomasses, nitrogen quotas and epiphytes. Driving variables are light intensity, wind speed, rain data and water temperature. This seagrass model has been coupled to another biological model in order to simulate the relative contributions of each primary producer to: (i) the total ecosystem production, (ii) the impact on inorganic nitrogen and (iii) the fluxes towards the detritus compartment. As a first step in the modelling of seagrass beds in the Thau lagoon, the model has a vertical structure based on four boxes (a water box on top of three sediment boxes) and the horizontal variability is neglected until now. This simple box structure is nevertheless representative for the shallow depth Z. noltii meadows, spread over large areas at the lagoon periphery.After calibration, simulation results have been compared with in situ measurements and have shown that the model is able to reproduce the general pattern of biomasses and nitrogen contents seasonal dynamics. Moreover, results show that, in such shallow ecosystems, seagrasses remain the most productive compartment when compared with epiphytes or phytoplankton productions, and that seagrasses, probably due to their ability in taking nutrients in the sediment, have a lower impact on nutrient concentration in the water column than the phytoplankton. Furthermore, in spite of active mechanisms of internal nitrogen redistribution and reclamation, the occurrence of a nitrogen limitation of the seagrass growth during summer, already mentioned in the literature, have also been pointed out by the model. Finally, simulations seems to point out that epiphytes and phytoplankton could compete for nitrogen in the water column, while a competition for light resources seems to be more likely between epiphytes and seagrasses.  相似文献   

11.
Lead (Pb) is a toxin that after childhood exposure poses a lifetime of health risks. One route of exposure is soil-Pb as a result of ∼12 million metric tons of Pb residue in paint and gasoline sold in the US during the 20th Century. Pb accumulated in soil of the community is a good predictor for blood Pb of children living there. This retrospective study compares the soil-Pb on Housing Authority of New Orleans (HANO) properties with adjacent private residential (RES) properties within a 0.8 km (0.5 mile) radius. The sample subset (n = 951) is from two soil-Pb surveys (total n = 9,493) conducted between 1989 and 2000. The properties were in both the inner city (CORE) and outlying (OUTER) communities. The data were analyzed using multi-response permutation procedures (MRPP). The soil-Pb results differ significantly (P-value < 0.001) on same-aged HANO properties at different locations; thus, year of construction does not give adequate explanation for the soil-Pb differences. HANO and RES soils are significantly more Pb contaminated in the CORE than in OUTER communities (P-value < 0.001). The CORE has many more years of traffic congestion than OUTER communities; therefore, the lead additives to gasoline, and not lead-based paint, best elucidate the differences of the soil-Pb footprint at HANO and RES properties in the CORE and OUTER communites. Currently HANO properties are being redeveloped with cleaner soil, but soil on RES properties in the CORE of New Orleans remains a large source of Pb (median = 707 mg/kg in this study) for human exposure, especially children.  相似文献   

12.
13.
Many colourful sexually selected signals in animals are carotenoid-dependent and, because carotenoids function as antiradicals and immunostimulating molecules, carotenoid-dependent signals may honestly reflect the health state of individuals. Some others nutrients like vitamin A may also enhance health and colouration, but these have rarely been tested alongside carotenoids in colourful birds. Here, we examined whether beak colour of the spotless starling (Sturnus unicolor) reflected circulating levels of carotenoids and/or vitamin A (retinol). Spotless starlings are polygynous, sexually dimorphic birds (i.e. length of chest feathers). The tip of the beaks of male and female spotless starlings is more intensely coloured at the beginning of the breeding season and becomes dull after mating, which may suggest a sexual function. We found that females have a more intensely coloured beak and higher plasma carotenoid concentration than males during mating, and, despite the finding that carotenoid and vitamin A levels were not significantly related; colour intensity was positively correlated with plasma concentration of carotenoids and vitamin A in both sexes. However, adult beak coloration was not associated with carotenoid and vitamin A concentrations after nestlings were hatched. Therefore, beak colouration of spotless starlings provides information about circulating levels of carotenoids and vitamins during the mating season and may potentially function as a reliable signal of physiological status in the context of sexual selection.  相似文献   

14.
15.
Experimental results indicate that both parental acclimation temperature and egg-incubation temperature have significant effects on the egg-hatching time of Acartia tonsa Dana between 15° and 25°C. Effects of parental acclimation temperature and egg-incubation temperature are additive if the long-term parental acclimation temperature is constant. A. tonsa are sensitive to temperature and changes of temperature during development (in vivo) and after they are laid (in vitro), up to the time of hatching. A temperature change of the parent culture for time periods of 86 h to 8 d is sufficient to change egg-hatching times. The time required for a temperature change to affect egg-hatching times depends on the magnitude and direction of the temperature change. Field collected A. tonsa demonstrate that changes in egg-hatching times occur in the field populations and can be predicted by mean weekly water temperature.  相似文献   

16.
To assess the fitness consequences of foraging on patchy resources, consumption rates, growth rates and survivorship of Armadillidium vulgare were monitored while feeding in arenas in which the spatial distribution of patches of high quality food (powdered dicotyledonous leaf litter) was varied within a matrix of low quality food (powdered grass leaf litter). Predictions from behavioural experiments that these fitness correlates would be lower when high quality food is more heterogeneously distributed in space were tested but not supported either by laboratory or field experiments. To investigate whether A. vulgare can develop the ability to relocate high quality food patches, changes in foraging behaviour, over a comparable time period to that used in the fitness experiments, were monitored in arenas in which there was a high quality food patch in a low quality matrix. A. vulgare increased its ability to relocate the position of high quality food over time. It reduced time spent in low quality food matrices and increased time spent in high quality food patches with time after the start of the experiment. When the position of a high quality food patch was moved, the time spent in the low quality food matrix increased and less time was spent in high quality food patches, compared to arenas in which the food was not moved. The fitness benefits for saprophages of developing the ability to relocate high quality patches while foraging in spatially heterogeneous environments are discussed.  相似文献   

17.
18.
19.
20.
Summary. Phoresy is an interspecific association where mobile organisms ensure small and/or wingless organisms to colonize patchy distributed environment. Macrocheles saceri (Acari: Mesostigmata) is a phoretic mite which specialized on Scarabaeus dung beetles (Coleoptera: Scarabaeidae). Variation for phoretic load and sites for mite fixation on beetle body has been tested according to Scarabaeus species. The number of setae on beetle body cannot explain the observed patterns in mite fixation. Evidence was provided that the semiochemicals of the host cuticle play a kairomonal role in the host finding behaviour of phoretic mites. In addition semiochemicals ensure host discrimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号