共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the key determinants of success in biodiversity conservation is how well conservation planning decisions account for the social system in which actions are to be implemented. Understanding elements of how the social and ecological systems interact can help identify opportunities for implementation. Utilizing data from a large‐scale conservation initiative in southwestern of Australia, we explored how a social–ecological system framework can be applied to identify how social and ecological factors interact to influence the opportunities for conservation. Using data from semistructured interviews, an online survey, and publicly available data, we developed a conceptual model of the social–ecological system associated with the conservation of the Fitz‐Stirling region. We used this model to identify the relevant variables (remnants of vegetation, stakeholder presence, collaboration between stakeholders, and their scale of management) that affect the implementation of conservation actions in the region. We combined measures for these variables to ascertain how areas associated with different levels of ecological importance coincided with areas associated with different levels of stakeholder presence, stakeholder collaboration, and scales of management. We identified areas that could benefit from different implementation strategies, from those suitable for immediate conservation action to areas requiring implementation over the long term to increase on‐the‐ground capacity and identify mechanisms to incentivize implementation. The application of a social–ecological framework can help conservation planners and practitioners facilitate the integration of ecological and social data to inform the translation of priorities for action into implementation strategies that account for the complexities of conservation problems in a focused way. 相似文献
2.
Quantitative tools for implementing the new definition of significant portion of the range in the U.S. Endangered Species Act 下载免费PDF全文
Julia E. Earl Sam Nicol Ruscena Wiederholt Jay E. Diffendorfer Darius Semmens D. T. Tyler Flockhart Brady J. Mattsson Gary McCracken D. Ryan Norris Wayne E. Thogmartin Laura López‐Hoffman 《Conservation biology》2018,32(1):35-49
In 2014, the Fish and Wildlife Service (FWS) and National Marine Fisheries Service announced a new policy interpretation for the U.S. Endangered Species Act (ESA). According to the act, a species must be listed as threatened or endangered if it is determined to be threatened or endangered in a significant portion of its range (SPR). The 2014 policy seeks to provide consistency by establishing that a portion of the range should be considered significant if the associated individuals’ “removal would cause the entire species to become endangered or threatened.” We reviewed 20 quantitative techniques used to assess whether a portion of a species’ range is significant according to the new guidance. Our assessments are based on the 3R criteria—redundancy (i.e., buffering from catastrophe), resiliency (i.e., ability to withstand stochasticity), and representation (i.e., ability to evolve)—that the FWS uses to determine if a species merits listing. We identified data needs for each quantitative technique and considered which methods could be implemented given the data limitations typical of rare species. We also identified proxies for the 3Rs that may be used with limited data. To assess potential data availability, we evaluated 7 example species by accessing data in their species status assessments, which document all the information used during a listing decision. In all species, an SPR could be evaluated with at least one metric for each of the 3Rs robustly or with substantial assumptions. Resiliency assessments appeared most constrained by limited data, and many species lacked information on connectivity between subpopulations, genetic variation, and spatial variability in vital rates. These data gaps will likely make SPR assessments for species with complex life histories or that cross national boundaries difficult. Although we reviewed techniques for the ESA, other countries require identification of significant areas and could benefit from this research. 相似文献
3.
Stephanie R. Januchowski‐Hartley Vanessa M. Adams Virgilio Hermoso 《Conservation biology》2018,32(2):287-293
Worldwide, invasive species are a leading driver of environmental change across terrestrial, marine, and freshwater environments and cost billions of dollars annually in ecological damages and economic losses. Resources limit invasive‐species control, and planning processes are needed to identify cost‐effective solutions. Thus, studies are increasingly considering spatially variable natural and socioeconomic assets (e.g., species persistence, recreational fishing) when planning the allocation of actions for invasive‐species management. There is a need to improve understanding of how such assets are considered in invasive‐species management. We reviewed over 1600 studies focused on management of invasive species, including flora and fauna. Eighty‐four of these studies were included in our final analysis because they focused on the prioritization of actions for invasive species management. Forty‐five percent (n = 38) of these studies were based on spatial optimization methods, and 35% (n = 13) accounted for spatially variable assets. Across all 84 optimization studies considered, 27% (n = 23) explicitly accounted for spatially variable assets. Based on our findings, we further explored the potential costs and benefits to invasive species management when spatially variable assets are explicitly considered or not. To include spatially variable assets in decision‐making processes that guide invasive‐species management there is a need to quantify environmental responses to invasive species and to enhance understanding of potential impacts of invasive species on different natural or socioeconomic assets. We suggest these gaps could be filled by systematic reviews, quantifying invasive species impacts on native species at different periods, and broadening sources and enhancing sharing of knowledge. 相似文献
4.
Diagnosing the processes that threaten species persistence is critical for recovery planning and risk forecasting. Dominant threats are typically inferred by experts on the basis of a patchwork of informal methods. Transparent, quantitative diagnostic tools would contribute much‐needed consistency, objectivity, and rigor to the process of diagnosing anthropogenic threats. Long‐term census records, available for an increasingly large and diverse set of taxa, may exhibit characteristic signatures of specific threatening processes and thereby provide information for threat diagnosis. We developed a flexible Bayesian framework for diagnosing threats on the basis of long‐term census records and diverse ancillary sources of information. We tested this framework with simulated data from artificial populations subjected to varying degrees of exploitation and habitat loss and several real‐world abundance time series for which threatening processes are relatively well understood: bluefin tuna (Thunnus maccoyii) and Atlantic cod (Gadus morhua) (exploitation) and Red Grouse (Lagopus lagopus scotica) and Eurasian Skylark (Alauda arvensis) (habitat loss). Our method correctly identified the process driving population decline for over 90% of time series simulated under moderate to severe threat scenarios. Successful identification of threats approached 100% for severe exploitation and habitat loss scenarios. Our method identified threats less successfully when threatening processes were weak and when populations were simultaneously affected by multiple threats. Our method selected the presumed true threat model for all real‐world case studies, although results were somewhat ambiguous in the case of the Eurasian Skylark. In the latter case, incorporation of an ancillary source of information (records of land‐use change) increased the weight assigned to the presumed true model from 70% to 92%, illustrating the value of the proposed framework in bringing diverse sources of information into a common rigorous framework. Ultimately, our framework may greatly assist conservation organizations in documenting threatening processes and planning species recovery. Inferencia la Naturaleza de las Amenazas Antropogénicas para los Registros de Abundancia a Largo Plazo 相似文献
5.
Sam S. Cruickshank Arpat Ozgul Silvia Zumbach Benedikt R. Schmidt 《Conservation biology》2016,30(5):1112-1121
Accurate trend estimates are necessary for understanding which species are declining and which are most in need of conservation action. Imperfect species detection may result in unreliable trend estimates because this may lead to the overestimation of declines. Because many management decisions are based on population trend estimates, such biases could have severe consequences for conservation policy. We used an occupancy‐modeling framework to estimate detectability and calculate nationwide population trends for 14 Swiss amphibian species both accounting for and ignoring imperfect detection. Through the application of International Union for Conservation of Nature Red List criteria to the different trend estimates, we assessed whether ignoring imperfect detection could affect conservation policy. Imperfect detection occurred for all species and detection varied substantially among species, which led to the overestimation of population declines when detectability was ignored. Consequently, accounting for imperfect detection lowered the red‐list risk category for 5 of the 14 species assessed. We demonstrate that failing to consider species detectability can have serious consequences for species management and that occupancy modeling provides a flexible framework to account for observation bias and improve assessments of conservation status. A problem inherent to most historical records is that they contain presence‐only data from which only relative declines can be estimated. A move toward the routine recording of nonobservation and absence data is essential if conservation practitioners are to move beyond this toward accurate population trend estimation. 相似文献
6.
KEVIN T. SHOEMAKER ALVIN R. BREISCH JESSE W. JAYCOX JAMES P. GIBBS 《Conservation biology》2013,27(3):542-551
For decades conservation biologists have proposed general rules of thumb for minimum viable population size (MVP); typically, they range from hundreds to thousands of individuals. These rules have shifted conservation resources away from small and fragmented populations. We examined whether iteroparous, long‐lived species might constitute an exception to general MVP guidelines. On the basis of results from a 10‐year capture‐recapture study in eastern New York (U.S.A.), we developed a comprehensive demographic model for the globally threatened bog turtle (Glyptemys muhlenbergii), which is designated as endangered by the IUCN in 2011. We assessed population viability across a wide range of initial abundances and carrying capacities. Not accounting for inbreeding, our results suggest that bog turtle colonies with as few as 15 breeding females have >90% probability of persisting for >100 years, provided vital rates and environmental variance remain at currently estimated levels. On the basis of our results, we suggest that MVP thresholds may be 1–2 orders of magnitude too high for many long‐lived organisms. Consequently, protection of small and fragmented populations may constitute a viable conservation option for such species, especially in a regional or metapopulation context. Reexaminando el Concepto de Población Mínima Viable para Especies Longevas Resumen 相似文献
7.
Spatial,socio‐economic,and ecological implications of incorporating minimum size constraints in marine protected area network design 下载免费PDF全文
Kristian Metcalfe Gregory Vaughan Sandrine Vaz Robert J. Smith 《Conservation biology》2015,29(6):1615-1625
Marine protected areas (MPAs) are the cornerstone of most marine conservation strategies, but the effectiveness of each one partly depends on its size and distance to other MPAs in a network. Despite this, current recommendations on ideal MPA size and spacing vary widely, and data are lacking on how these constraints might influence the overall spatial characteristics, socio‐economic impacts, and connectivity of the resultant MPA networks. To address this problem, we tested the impact of applying different MPA size constraints in English waters. We used the Marxan spatial prioritization software to identify a network of MPAs that met conservation feature targets, whilst minimizing impacts on fisheries; modified the Marxan outputs with the MinPatch software to ensure each MPA met a minimum size; and used existing data on the dispersal distances of a range of species found in English waters to investigate the likely impacts of such spatial constraints on the region's biodiversity. Increasing MPA size had little effect on total network area or the location of priority areas, but as MPA size increased, fishing opportunity cost to stakeholders increased. In addition, as MPA size increased, the number of closely connected sets of MPAs in networks and the average distance between neighboring MPAs decreased, which consequently increased the proportion of the planning region that was isolated from all MPAs. These results suggest networks containing large MPAs would be more viable for the majority of the region's species that have small dispersal distances, but dispersal between MPA sets and spill‐over of individuals into unprotected areas would be reduced. These findings highlight the importance of testing the impact of applying different MPA size constraints because there are clear trade‐offs that result from the interaction of size, number, and distribution of MPAs in a network. 相似文献
8.
Importance of Habitat Quality and Landscape Connectivity for the Persistence of Endangered Natterjack Toads 总被引:1,自引:0,他引:1
Abstract: The natterjack toad (Bufo calamita) is endangered in several parts of its distribution, including Belgium, where it occurs mainly in artificial habitats. We parameterized a general model for natterjack population viability analysis (PVA) and tested its sensitivity to changes in the values of basic parameters. Then we assessed the relative efficiency of various conservation measures in 2 situations: a small isolated population and a system of 4 populations connected by rare dispersal movements. We based the population viability analysis on a stage‐structured model of natterjack population dynamics. We parameterized the model in the RAMAS GIS platform with vital rates obtained from our own field experience and from published studies. Simulated natterjack populations were highly sensitive to habitat quality (particularly pond drying), to dispersal from surrounding local populations, and to a lesser extent to values of fecundity and survival of terrestrial stages. Population trajectories were nearly insensitive to initial abundances, carrying capacities, and the frequency of extreme climatic conditions. The simulations showed that in habitats with highly ephemeral ponds, where premetamorphosis mortality was high, natterjack populations nearly always had a very high extinction risk. We also illustrated how low dispersal rates (<1 dispersing individual/generation) efficiently rescued declining local populations. Such source‐sink dynamics demonstrate that the identification and management of source populations should be a high priority. 相似文献
9.
ANNI ARPONEN MAR CABEZA JOHANNA EKLUND HEINI KUJALA JOONA LEHTOMÄKI 《Conservation biology》2010,24(5):1198-1204
Abstract: Recent literature on systematic conservation planning has focused strongly on economics. It is a necessary component of efficient conservation planning because the question is about effective resource allocation. Nevertheless, there is an increasing tendency toward economic factors overriding biological considerations. Focusing too narrowly on economic cost may lead us back toward solutions resembling those obtained by opportunistic choice of areas, the avoidance of which was the motivation for development of systematic approaches. Moreover, there are many overlooked difficulties in incorporating economic considerations reliably into conservation planning because available economic data and the free market are complex. For instance, economies based on free markets tend to be shortsighted, whereas biodiversity conservation aims far into the future. Although economic data are necessary, they should not be relied on too heavily or considered separately from other sociopolitical factors. We suggest focusing on development of more‐comprehensive ecological‐economic modeling, while not forgetting the importance of purely biological analyses that are needed as a point of reference for evaluating conservation outcomes. 相似文献
10.
Attempts to minimize the effects of human–wildlife conflict (HWC) on conservation goals require an understanding of the mechanisms by which such conflicts are caused and sustained. This necessitates looking beyond the natural sciences to the human dimensions of wildlife management. Public dissemination of information regarding HWC occurs largely through the mass media. We conducted a content analysis of print media articles on human–leopard conflict in Mumbai, India. We sought to understand the framing of HWC and the changes in media coverage over a 10‐year period (2001–2011) during which a large number of attacks on people prior to 2005 were followed by a program of trapping and relocation. After 2005, when there was a decrease in the level of conflict, the tone of English‐language media reports changed. The perpetrator framing was over 5 times more likely before 2005, whereas a neutral framing was twice as likely after 2005. English‐language and non‐English‐language print media differed significantly in their framing of HWC and in the kinds of solutions advocated. Our results also suggest the print mass media in Mumbai could be an influential conduit for content that diminishes HWC. These media outlets seem attentive to human–leopard conflict, capable of correcting erroneous perceptions and facilitating mitigation and effective management. We believe better contact and mutual understanding between conservation professionals and the mass media could be an important component of managing HWC. We further suggest that in such interactions conservation professionals need to be aware of cultural and linguistic differences in reporting within the country. Entendiendo el Papel de las Representaciones del Conflicto Humano–Leopardo en Mumbai A Través del Análisis de Contenido de Medios 相似文献
11.
NJAL ROLLINSON DAVE M. KEITH AIMEE LEE S. HOUDE PAUL V. DEBES MEGHAN C. MCBRIDE JEFFREY A. HUTCHINGS 《Conservation biology》2014,28(2):529-540
Captive‐breeding programs can be implemented to preserve the genetic diversity of endangered populations such that the controlled release of captive‐bred individuals into the wild may promote recovery. A common difficulty, however, is that programs are founded with limited wild broodstock, and inbreeding can become increasingly difficult to avoid with successive generations in captivity. Program managers must choose between maintaining the genetic purity of populations, at the risk of inbreeding depression, or interbreeding populations, at the risk of outbreeding depression. We evaluate these relative risks in a captive‐breeding program for 3 endangered populations of Atlantic salmon (Salmo salar). In each of 2 years, we released juvenile F1 and F2 interpopulation hybrids, backcrosses, as well as inbred and noninbred within‐population crosstypes into 9 wild streams. Juvenile size and survival was quantified in each year. Few crosstype effects were observed, but interestingly, the relative fitness consequences of inbreeding and outbreeding varied from year to year. Temporal variation in environmental quality might have driven some of these annual differences, by exacerbating the importance of maternal effects on juvenile fitness in a year of low environmental quality and by affecting the severity of inbreeding depression differently in different years. Nonetheless, inbreeding was more consistently associated with a negative effect on fitness, whereas the consequences of outbreeding were less predictable. Considering the challenges associated with a sound risk assessment in the wild and given that the effect of inbreeding on fitness is relatively predictable, we suggest that risk can be weighted more strongly in terms of the probable outcome of outbreeding. Factors such as genetic similarities between populations and the number of generations in isolation can sometimes be used to assess outbreeding risk, in lieu of experimentation. Evaluación del Riesgo de Depresión por Endogamia y Exogamia en un Programa de Reproducción en Cautiverio 相似文献
12.
Abstract: The influence of landscape matrix on functional connectivity has been clearly established. Now methods to assess the effects of different land uses on species’ movements are needed because current methods are often biased. The use of physiological parameters as indicators of the level of resistance to animal movement associated with different land uses (i.e., matrix resistance) could provide estimates of energetic costs and risks to animals migrating through the matrix. To assess whether corticosterone levels indicate matrix resistance, we conducted experiments on substrate choice and measured levels of corticosterone before and after exposure of toads (Bufo bufo) to 3 common substrates (ploughed soil, meadow, and forest litter). We expected matrix resistance and hormone levels to increase from forest litter (habitat of the toad) to meadows to ploughed soil. Adult toads had higher corticosterone levels on ploughed soil than on forest litter or meadow substrates. Hormone levels did not differ between forest litter and meadow. Toads avoided moving onto ploughed soil. Corticosterone levels in juvenile toads were not related to substrate type; however, hormone levels decreased as humidity increased. Juveniles, unlike adults, did not avoid moving over ploughed soil. The difference in responses between adult and juvenile toads may have been due to differences in experimental design (for juveniles, entire body used to measure corticosterone concentration; for adults, saliva alone); differences in the scale of sensory perception of the substrate (juveniles are much smaller than adults); or differences in cognitive processes between adult and juvenile toads. Adults probably had experience with different substrate types, whereas juveniles first emerging from the water probably did not. As a consequence, arable lands could act as ecological traps for juvenile toads. 相似文献
13.
ELIZABETH B. HARPER TRACY A. G. RITTENHOUSE RAYMOND D. SEMLITSCH 《Conservation biology》2008,22(5):1205-1215
Abstract: Much of the biodiversity associated with isolated wetlands requires aquatic and terrestrial habitat to maintain viable populations. Current federal wetland regulations in the United States do not protect isolated wetlands or extend protection to surrounding terrestrial habitat. Consequently, some land managers, city planners, and policy makers at the state and local levels are making an effort to protect these wetland and neighboring upland habitats. Balancing human land‐use and habitat conservation is challenging, and well‐informed land‐use policy is hindered by a lack of knowledge of the specific risks of varying amounts of habitat loss. Using projections of wood frog (Rana sylvatica) and spotted salamander (Ambystoma maculatum) populations, we related the amount of high‐quality terrestrial habitat surrounding isolated wetlands to the decline and risk of extinction of local amphibian populations. These simulations showed that current state‐level wetland regulations protecting 30 m or less of surrounding terrestrial habitat are inadequate to support viable populations of pool‐breeding amphibians. We also found that species with different life‐history strategies responded differently to the loss and degradation of terrestrial habitat. The wood frog, with a short life span and high fecundity, was most sensitive to habitat loss and isolation, whereas the longer‐lived spotted salamander with lower fecundity was most sensitive to habitat degradation that lowered adult survival rates. Our model results demonstrate that a high probability of local amphibian population persistence requires sufficient terrestrial habitat, the maintenance of habitat quality, and connectivity among local populations. Our results emphasize the essential role of adequate terrestrial habitat to the maintenance of wetland biodiversity and ecosystem function and offer a means of quantifying the risks associated with terrestrial habitat loss and degradation. 相似文献
14.
Every year, millions of migratory shorebirds fly through the East Asian–Australasian Flyway between their arctic breeding grounds and Australasia. This flyway includes numerous coastal wetlands in Asia and the Pacific that are used as stopover sites where birds rest and feed. Loss of a few important stopover sites through sea‐level rise (SLR) could cause sudden population declines. We formulated and solved mathematically the problem of how to identify the most important stopover sites to minimize losses of bird populations across flyways by conserving land that facilitates upshore shifts of tidal flats in response to SLR. To guide conservation investment that minimizes losses of migratory bird populations during migration, we developed a spatially explicit flyway model coupled with a maximum flow algorithm. Migratory routes of 10 shorebird taxa were modeled in a graph theoretic framework by representing clusters of important wetlands as nodes and the number of birds flying between 2 nodes as edges. We also evaluated several resource allocation algorithms that required only partial information on flyway connectivity (node strategy, based on the impacts of SLR at nodes; habitat strategy, based on habitat change at sites; population strategy, based on population change at sites; and random investment). The resource allocation algorithms based on flyway information performed on average 15% better than simpler allocations based on patterns of habitat loss or local bird counts. The Yellow Sea region stood out as the most important priority for effective conservation of migratory shorebirds, but investment in this area alone will not ensure the persistence of species across the flyway. The spatial distribution of conservation investments differed enormously according to the severity of SLR and whether information about flyway connectivity was used to guide the prioritizations. With the rapid ongoing loss of coastal wetlands globally, our method provides insight into efficient conservation planning for migratory species. Gestión Óptima de una Ruta Migratoria de Múltiples Especies de Aves Costeras Sometida a Incremento del Nivel del Mar 相似文献
15.
Future habitat loss and extinctions driven by land‐use change in biodiversity hotspots under four scenarios of climate‐change mitigation 下载免费PDF全文
Brian Barker Thomas M. Brooks Louise P. Chini Qiongyu Huang Rachel M. Moore Jacob Noel George C. Hurtt 《Conservation biology》2015,29(4):1122-1131
Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land‐use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate‐change mitigation policies will reduce direct climate‐change impacts; however, these policies will influence land‐use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land‐use changes. We estimated past extinctions from historical land‐use changes (1500–2005) based on the global gridded land‐use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land‐use changes under alternative climate‐change scenarios (2005–2100). Future land‐use changes are projected to reduce natural vegetative cover by 26‐58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land‐use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate‐change mitigation scenario and biological factors such as the slope of the species–area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land‐use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land‐use changes in hotspots or by lessening the impact of future land‐use activities on biodiversity within hotspots. 相似文献
16.
GINA K. HIMES BOOR 《Conservation biology》2014,28(1):33-43
For species listed under the U.S. Endangered Species Act (ESA), the U.S. Fish and Wildlife Service and National Marine Fisheries Service are tasked with writing recovery plans that include “objective, measurable criteria” that define when a species is no longer at risk of extinction, but neither the act itself nor agency guidelines provide an explicit definition of objective, measurable criteria. Past reviews of recovery plans, including one published in 2012, show that many criteria lack quantitative metrics with clear biological rationale and are not meeting the measureable and objective mandate. I reviewed how objective, measureable criteria have been defined implicitly and explicitly in peer‐reviewed literature, the ESA, other U.S. statutes, and legal decisions. Based on a synthesis of these sources, I propose the following 6 standards be used as minimum requirements for objective, measurable criteria: contain a quantitative threshold with calculable units, stipulate a timeframe over which they must be met, explicitly define the spatial extent or population to which they apply, specify a sampling procedure that includes sample size, specify a statistical significance level, and include justification by providing scientific evidence that the criteria define a species whose extinction risk has been reduced to the desired level. To meet these 6 standards, I suggest that recovery plans be explicitly guided by and organized around a population viability modeling framework even if data or agency resources are too limited to complete a viability model. When data and resources are available, recovery criteria can be developed from the population viability model results, but when data and resources are insufficient for model implementation, extinction risk thresholds can be used as criteria. A recovery‐planning approach centered on viability modeling will also yield appropriately focused data‐acquisition and monitoring plans and will facilitate a seamless transition from recovery planning to delisting. Un Marco de Referencia para Desarrollar Criterios de Recuperación Objetivos y Medibles para Especies Amenazadas y en Peligro 相似文献
17.
ADAM C. D. BARLOW CHRISTINA J. GREENWOOD ISHTIAQ U. AHMAD JAMES L. D. SMITH 《Conservation biology》2010,24(5):1338-1347
Abstract: Human–carnivore conflict is manifested in the death of humans, livestock, and carnivores. The resulting negative local attitudes and retribution killings imperil the future of many endangered carnivores. We tailored existing management tools to create a framework to facilitate the selection of actions to alleviate human–carnivore conflict and applied the framework to the human–tiger conflict in the Bangladesh Sundarbans. We identified potential actions that consider previous management efforts, local knowledge, cost‐effectiveness, fieldwork experience of authors and project staff, previous research on tiger ecology by the authors, and recommendations from human–carnivore conflict studies in other countries. Our framework includes creation of a profile to improve understanding of the nature of the conflict and its underlying causality. Identified actions include deterrents, education, direct tiger management, and response teams. We ranked actions by their potential to reduce conflict and the monetary cost of their implementation. We ranked tiger‐response teams and monitoring problem tigers as the two best actions because both had relatively high impact and cost‐effectiveness. We believe this framework could be used under a wide range of human–wildlife conflict situations because it provides a structured approach to selection of mitigating actions. 相似文献
18.
Steven R. Beissinger Jason G. Bragg David J. Coates J. Gerard B. Oostermeijer Paul Sunnucks Nathan H. Schumaker Meredith V. Trotter Andrew G. Young 《Conservation biology》2015,29(3):755-764
We examined how ecological and evolutionary (eco‐evo) processes in population dynamics could be better integrated into population viability analysis (PVA). Complementary advances in computation and population genomics can be combined into an eco‐evo PVA to offer powerful new approaches to understand the influence of evolutionary processes on population persistence. We developed the mechanistic basis of an eco‐evo PVA using individual‐based models with individual‐level genotype tracking and dynamic genotype–phenotype mapping to model emergent population‐level effects, such as local adaptation and genetic rescue. We then outline how genomics can allow or improve parameter estimation for PVA models by providing genotypic information at large numbers of loci for neutral and functional genome regions. As climate change and other threatening processes increase in rate and scale, eco‐evo PVAs will become essential research tools to evaluate the effects of adaptive potential, evolutionary rescue, and locally adapted traits on persistence. 相似文献
19.
Using empirical models of species colonization under multiple threatening processes to identify complementary threat‐mitigation strategies 下载免费PDF全文
Ayesha I.T. Tulloch Alessio Mortelliti Geoffrey M. Kay Daniel Florance David Lindenmayer 《Conservation biology》2016,30(4):867-882
Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics—information that is lacking in most threat‐management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird‐population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch‐colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat‐mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species. 相似文献
20.
DAVID S. PILLIOD ERIN MUTHS RICK D. SCHERER PAUL E. BARTELT PAUL STEPHEN CORN BLAKE R. HOSSACK BRAD A. LAMBERT REBECCA MCCAFFERY CHRISTOPHER GAUGHAN 《Conservation biology》2010,24(5):1259-1267
Abstract: Chytridiomycosis is linked to the worldwide decline of amphibians, yet little is known about the demographic effects of the disease. We collected capture–recapture data on three populations of boreal toads (Bufo boreas [Bufo = Anaxyrus]) in the Rocky Mountains (U.S.A.). Two of the populations were infected with chytridiomycosis and one was not. We examined the effect of the presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]; the agent of chytridiomycosis) on survival probability and population growth rate. Toads that were infected with Bd had lower average annual survival probability than uninfected individuals at sites where Bd was detected, which suggests chytridiomycosis may reduce survival by 31–42% in wild boreal toads. Toads that were negative for Bd at infected sites had survival probabilities comparable to toads at the uninfected site. Evidence that environmental covariates (particularly cold temperatures during the breeding season) influenced toad survival was weak. The number of individuals in diseased populations declined by 5–7%/year over the 6 years of the study, whereas the uninfected population had comparatively stable population growth. Our data suggest that the presence of Bd in these toad populations is not causing rapid population declines. Rather, chytridiomycosis appears to be functioning as a low‐level, chronic disease whereby some infected individuals survive but the overall population effects are still negative. Our results show that some amphibian populations may be coexisting with Bd and highlight the importance of quantitative assessments of survival in diseased animal populations. 相似文献