首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Recent literature on systematic conservation planning has focused strongly on economics. It is a necessary component of efficient conservation planning because the question is about effective resource allocation. Nevertheless, there is an increasing tendency toward economic factors overriding biological considerations. Focusing too narrowly on economic cost may lead us back toward solutions resembling those obtained by opportunistic choice of areas, the avoidance of which was the motivation for development of systematic approaches. Moreover, there are many overlooked difficulties in incorporating economic considerations reliably into conservation planning because available economic data and the free market are complex. For instance, economies based on free markets tend to be shortsighted, whereas biodiversity conservation aims far into the future. Although economic data are necessary, they should not be relied on too heavily or considered separately from other sociopolitical factors. We suggest focusing on development of more‐comprehensive ecological‐economic modeling, while not forgetting the importance of purely biological analyses that are needed as a point of reference for evaluating conservation outcomes.  相似文献   

2.
Payments to compensate landowners for carrying out costly land‐use measures that benefit endangered biodiversity have become an important policy instrument. When designing such payments, it is important to take into account that spatially connected habitats are more valuable for many species than isolated ones. One way to incentivize provision of connected habitats is to offer landowners an agglomeration bonus, that is, a bonus on top of payments they are receiving to conserve land if the land is spatially connected. Researchers have compared the cost‐effectiveness of the agglomeration bonus with 2 alternatives: an all‐or‐nothing, agglomeration payment, where landowners receive a payment only if the conserved land parcels have a certain level of spatial connectivity, and a spatially homogeneous payment, where landowners receive a payment for conserved land parcels irrespective of their location. Their results show the agglomeration bonus is rarely the most cost‐effective option, and when it is, it is only slightly better than one of the alternatives. This suggests that the agglomeration bonus should not be given priority as a policy design option. However, this finding is based on consideration of only 1 species. We examined whether the same applied to 2 species, one for which the homogeneous payment is best and the other for which the agglomeration payment is most cost‐effective. We modified a published conceptual model so that we were able to assess the cost‐effectiveness of payment schemes for 2 species and applied it to a grassland bird and a grassland butterfly in Germany that require the same habitat but have different spatial‐connectivity needs. When conserving both species, the agglomeration bonus was more cost‐effective than the agglomeration and the homogeneous payment; thus, we showed that as a policy the agglomeration bonus is a useful conservation‐payment option.  相似文献   

3.
One of the key determinants of success in biodiversity conservation is how well conservation planning decisions account for the social system in which actions are to be implemented. Understanding elements of how the social and ecological systems interact can help identify opportunities for implementation. Utilizing data from a large‐scale conservation initiative in southwestern of Australia, we explored how a social–ecological system framework can be applied to identify how social and ecological factors interact to influence the opportunities for conservation. Using data from semistructured interviews, an online survey, and publicly available data, we developed a conceptual model of the social–ecological system associated with the conservation of the Fitz‐Stirling region. We used this model to identify the relevant variables (remnants of vegetation, stakeholder presence, collaboration between stakeholders, and their scale of management) that affect the implementation of conservation actions in the region. We combined measures for these variables to ascertain how areas associated with different levels of ecological importance coincided with areas associated with different levels of stakeholder presence, stakeholder collaboration, and scales of management. We identified areas that could benefit from different implementation strategies, from those suitable for immediate conservation action to areas requiring implementation over the long term to increase on‐the‐ground capacity and identify mechanisms to incentivize implementation. The application of a social–ecological framework can help conservation planners and practitioners facilitate the integration of ecological and social data to inform the translation of priorities for action into implementation strategies that account for the complexities of conservation problems in a focused way.  相似文献   

4.
In a world of shrinking habitats and increasing competition for natural resources, potentially dangerous predators bring the challenges of coexisting with wildlife sharply into focus. Through interdisciplinary collaboration among authors trained in the humanities, social sciences, and natural sciences, we reviewed current approaches to mitigating adverse human–predator encounters and devised a vision for future approaches to understanding and mitigating such encounters. Limitations to current approaches to mitigation include too much focus on negative impacts; oversimplified equating of levels of damage with levels of conflict; and unsuccessful technical fixes resulting from failure to engage locals, address hidden costs, or understand cultural (nonscientific) explanations of the causality of attacks. An emerging interdisciplinary literature suggests that to better frame and successfully mitigate negative human–predator relations conservation professionals need to consider dispensing with conflict as the dominant framework for thinking about human–predator encounters; work out what conflicts are really about (they may be human–human conflicts); unravel the historical contexts of particular conflicts; and explore different cultural ways of thinking about animals. The idea of cosmopolitan natures may help conservation professionals think more clearly about human–predator relations in both local and global context. These new perspectives for future research practice include a recommendation for focused interdisciplinary research and the use of new approaches, including human‐animal geography, multispecies ethnography, and approaches from the environmental humanities notably environmental history. Managers should think carefully about how they engage with local cultural beliefs about wildlife, work with all parties to agree on what constitutes good evidence, develop processes and methods to mitigate conflicts, and decide how to monitor and evaluate these. Demand for immediate solutions that benefit both conservation and development favors dispute resolution and technical fixes, which obscures important underlying drivers of conflicts. If these drivers are not considered, well‐intentioned efforts focused on human–wildlife conflicts will fail.  相似文献   

5.
Abstract: Species’ assessments must frequently be derived from opportunistic observations made by volunteers (i.e., citizen scientists). Interpretation of the resulting data to estimate population trends is plagued with problems, including teasing apart genuine population trends from variations in observation effort. We devised a way to correct for annual variation in effort when estimating trends in occupancy (species distribution) from faunal or floral databases of opportunistic observations. First, for all surveyed sites, detection histories (i.e., strings of detection–nondetection records) are generated. Within‐season replicate surveys provide information on the detectability of an occupied site. Detectability directly represents observation effort; hence, estimating detectablity means correcting for observation effort. Second, site‐occupancy models are applied directly to the detection‐history data set (i.e., without aggregation by site and year) to estimate detectability and species distribution (occupancy, i.e., the true proportion of sites where a species occurs). Site‐occupancy models also provide unbiased estimators of components of distributional change (i.e., colonization and extinction rates). We illustrate our method with data from a large citizen‐science project in Switzerland in which field ornithologists record opportunistic observations. We analyzed data collected on four species: the widespread Kingfisher (Alcedo atthis) and Sparrowhawk (Accipiter nisus) and the scarce Rock Thrush (Monticola saxatilis) and Wallcreeper (Tichodroma muraria). Our method requires that all observed species are recorded. Detectability was <1 and varied over the years. Simulations suggested some robustness, but we advocate recording complete species lists (checklists), rather than recording individual records of single species. The representation of observation effort with its effect on detectability provides a solution to the problem of differences in effort encountered when extracting trend information from haphazard observations. We expect our method is widely applicable for global biodiversity monitoring and modeling of species distributions.  相似文献   

6.
Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land‐use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate‐change mitigation policies will reduce direct climate‐change impacts; however, these policies will influence land‐use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land‐use changes. We estimated past extinctions from historical land‐use changes (1500–2005) based on the global gridded land‐use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land‐use changes under alternative climate‐change scenarios (2005–2100). Future land‐use changes are projected to reduce natural vegetative cover by 26‐58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land‐use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate‐change mitigation scenario and biological factors such as the slope of the species–area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land‐use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land‐use changes in hotspots or by lessening the impact of future land‐use activities on biodiversity within hotspots.  相似文献   

7.
The ever‐widening scope and range of global change and interconnected systemic risks arising from people–environment relationships (social‐ecological risks) appears to be increasing concern among, and involvement of, citizens in an increasingly diversified number of citizen science projects responding to these risks. We examined the relationship between epistemic cultures in citizen science projects and learning potential related to matters of concern. We then developed a typology of purposes and a citizen science epistemic‐cultures heuristic and mapped 56 projects in southern Africa using this framework. The purpose typology represents the range of knowledge‐production purposes, ranging from laboratory science to social learning, whereas the epistemic‐cultures typology is a relational representation of scientist and citizen participation and their approach to knowledge production. Results showed an iterative relationship between matters of fact and matters of concern across the projects; the nexus of citizens’ engagement in knowledge‐production activities varied. The knowledge‐production purposes informed and shaped the epistemic cultures of all the sampled citizen science projects, which in turn influenced the potential for learning within each project. Through a historical review of 3 phases in a long‐term river health‐monitoring project, we found that it is possible to evolve the learning curve of citizen science projects. This evolution involved the development of scientific water monitoring tools, the parallel development of pedagogic practices supporting monitoring activities, and situated engagement around matters of concern within social activism leading to learning‐led change. We conclude that such evolutionary processes serve to increase potential for learning and are necessary if citizen science is to contribute to wider restructuring of the epistemic culture of science under conditions of expanding social‐ecological risk.  相似文献   

8.
Abstract: The economic valuation of ecosystem services is a key policy tool in stemming losses of biological diversity. It is proposed that the loss of ecosystem function and the biological resources within ecosystems is due in part to the failure of markets to recognize the benefits humans derive from ecosystems. Placing monetary values on ecosystem services is often suggested as a necessary step in correcting such market failures. We consider the effects of valuing different types of ecosystem services within an economic framework. We argue that provisioning and regulating ecosystem services are generally produced and consumed in ways that make them amenable to economic valuation. The values associated with cultural ecosystem services lie outside the domain of economic valuation, but their worth may be expressed through noneconomic, deliberative forms of valuation. We argue that supporting ecosystem services are not of direct value and that the losses of such services can be expressed in terms of the effects of their loss on the risk to the provision of the directly valued ecosystem services they support. We propose a heuristic framework that considers the relations between ecological risks and returns in the provision of ecosystem services. The proposed ecosystem‐service valuation framework, which allows the expression of the value of all types of ecosystem services, calls for a shift from static, purely monetary valuation toward the consideration of trade‐offs between the current flow of benefits from ecosystems and the ability of those ecosystems to provide future flows.  相似文献   

9.
10.
Many objectives motivate ecological restoration, including improving vegetation condition, increasing the range and abundance of threatened species, and improving species richness and diversity. Although models have been used to examine the outcomes of ecological restoration, few researchers have attempted to develop models to account for multiple, potentially competing objectives. We developed a combined state‐and‐transition, species‐distribution model to predict the effects of restoration actions on vegetation condition and extent, bird diversity, and the distribution of several bird species in southeastern Australian woodlands. The actions reflected several management objectives. We then validated the models against an independent data set and investigated how the best management decision might change when objectives were valued differently. We also used model results to identify effective restoration options for vegetation and bird species under a constrained budget. In the examples we evaluated, no one action (improving vegetation condition and extent, increasing bird diversity, or increasing the probability of occurrence for threatened species) provided the best outcome across all objectives. In agricultural lands, the optimal management actions for promoting the occurrence of the Brown Treecreeper (Climacteris picumnus), an iconic threatened species, resulted in little improvement in the extent of the vegetation and a high probability of decreased vegetation condition. This result highlights that the best management action in any situation depends on how much the different objectives are valued. In our example scenario, no management or weed control were most likely to be the best management options to satisfy multiple restoration objectives. Our approach to exploring trade‐offs in management outcomes through integrated modeling and structured decision‐support approaches has wide application for situations in which trade‐offs exist between competing conservation objectives.  相似文献   

11.
The use of conservation translocations to mitigate human effects on biodiversity is increasing, but how these efforts are allocated remains unclear. Based on a comprehensive literature review and online author survey, we sought to determine the goals of translocation efforts, whether they focus on species and regions with high threat and likelihood of perceived success, and how success might be improved. We systematically searched the ISI Web of Knowledge and Academic Search Complete databases to determine the species and regions of conservation translocations and found 1863 articles on conservation translocations in the United States, Canada, Mexico, Central America, and Caribbean published from 1974 to 2013. We questioned 330 relevant authors to determine the motivation for translocations, how translocations were evaluated, and obstacles encountered. Conservation translocations in North America were geographically widespread (in 21 countries), increased in frequency over time for all animal classes (from 1 in 1974 to 84 in 2013), and included 279 different species. Reintroductions and reinforcements were more common in the United States than in Canada and Mexico, Central America, or the Caribbean, and their prevalence was correlated with the number of species at risk at national and state or provincial levels. Translocated species had a higher threat status at state and provincial levels than globally (International Union for Conservation of Nature Red List categorization), suggesting that translocations may have been motivated by regional priorities rather than global risk. Our survey of authors was consistent with these results; most translocations were requested, supported, or funded by government agencies and downlisting species at national or state or provincial levels was the main goal. Nonetheless, downlisting was the least reported measure of success, whereas survival and reproduction of translocated individuals were the most reported. Reported barriers to success included biological factors such as animal mortality and nonbiological factors, such as financial constraints, which were less often considered in the selection of release sites. Our review thus highlights discrepancies between project goals and evaluation criteria and between risk factors considered and obstacles encountered, indicating room to further optimize translocation projects.  相似文献   

12.
Abstract: Assessing species survival status is an essential component of conservation programs. We devised a new statistical method for estimating the probability of species persistence from the temporal sequence of collection dates of museum specimens. To complement this approach, we developed quantitative stopping rules for terminating the search for missing or allegedly extinct species. These stopping rules are based on survey data for counts of co‐occurring species that are encountered in the search for a target species. We illustrate both these methods with a case study of the Ivory‐billed Woodpecker (Campephilus principalis), long assumed to have become extinct in the United States in the 1950s, but reportedly rediscovered in 2004. We analyzed the temporal pattern of the collection dates of 239 geo‐referenced museum specimens collected throughout the southeastern United States from 1853 to 1932 and estimated the probability of persistence in 2011 as <6.4 × 10?5, with a probable extinction date no later than 1980. From an analysis of avian census data (counts of individuals) at 4 sites where searches for the woodpecker were conducted since 2004, we estimated that at most 1–3 undetected species may remain in 3 sites (one each in Louisiana, Mississippi, Florida). At a fourth site on the Congaree River (South Carolina), no singletons (species represented by one observation) remained after 15,500 counts of individual birds, indicating that the number of species already recorded (56) is unlikely to increase with additional survey effort. Collectively, these results suggest there is virtually no chance the Ivory‐billed Woodpecker is currently extant within its historical range in the southeastern United States. The results also suggest conservation resources devoted to its rediscovery and recovery could be better allocated to other species. The methods we describe for estimating species extinction dates and the probability of persistence are generally applicable to other species for which sufficient museum collections and field census results are available.  相似文献   

13.
The International Union for Conservation of Nature (IUCN) Red List includes 832 species listed as extinct since 1600, a minuscule fraction of total biodiversity. This extinction rate is of the same order of magnitude as the background rate and has been used to downplay the biodiversity crisis. Invertebrates comprise 99% of biodiversity, yet the status of a negligible number has been assessed. We assessed extinction in the Hawaiian land snail family Amastridae (325 species, IUCN lists 33 as extinct). We did not use the stringent IUCN criteria, by which most invertebrates would be considered data deficient, but a more realistic approach comparing historical collections with modern surveys and expert knowledge. Of the 325 Amastridae species, 43 were originally described as fossil or subfossil and were assumed to be extinct. Of the remaining 282, we evaluated 88 as extinct and 15 as extant and determined that 179 species had insufficient evidence of extinction (though most are probably extinct). Results of statistical assessment of extinction probabilities were consistent with our expert evaluations of levels of extinction. Modeling various extinction scenarios yielded extinction rates of 0.4‐14.0% of the amastrid fauna per decade. The true rate of amastrid extinction has not been constant; generally, it has increased over time. We estimated a realistic average extinction rate as approximately 5%/decade since the first half of the nineteenth century. In general, oceanic island biotas are especially susceptible to extinction and global rate generalizations do not reflect this. Our approach could be used for other invertebrates, especially those with restricted ranges (e.g., islands), and such an approach may be the only way to evaluate invertebrates rapidly enough to keep up with ongoing extinction.  相似文献   

14.
Abstract: Climate change affects individual organisms by altering development, physiology, behavior, and fitness, and populations by altering genetic and phenotypic composition, vital rates, and dynamics. We sought to clarify how selection, phenotypic plasticity, and demography are linked in the context of climate change. On the basis of theory and results of recent empirical studies of plants and animals, we believe the ecological and evolutionary issues relevant to population persistence as climate changes are the rate, type, magnitude, and spatial pattern of climate‐induced abiotic and biotic change; generation time and life history of the organism; extent and type of phenotypic plasticity; amount and distribution of adaptive genetic variation across space and time; dispersal potential; and size and connectivity of subpopulations. An understanding of limits to plasticity and evolutionary potential across traits, populations, and species and feedbacks between adaptive and demographic responses is lacking. Integrated knowledge of coupled ecological and evolutionary mechanisms will increase understanding of the resilience and probabilities of persistence of populations and species.  相似文献   

15.
An opportunity represents an advantageous combination of circumstances that allows goals to be achieved. We reviewed the nature of opportunity and how it manifests in different subsystems (e.g., biophysical, social, political, economic) as conceptualized in other bodies of literature, including behavior, adoption, entrepreneur, public policy, and resilience literature. We then developed a multidisciplinary conceptualization of conservation opportunity. We identified 3 types of conservation opportunity: potential, actors remove barriers to problem solving by identifying the capabilities within the system that can be manipulated to create support for conservation action; traction, actors identify windows of opportunity that arise from exogenous shocks, events, or changes that remove barriers to solving problems; and existing, everything is in place for conservation action (i.e., no barriers exist) and an actor takes advantage of the existing circumstances to solve problems. Different leverage points characterize each type of opportunity. Thus, unique stages of opportunity identification or creation and exploitation exist: characterizing the system and defining problems; identifying potential solutions; assessing the feasibility of solutions; identifying or creating opportunities; and taking advantage of opportunities. These stages can be undertaken independently or as part of a situational analysis and typically comprise the first stage, but they can also be conducted iteratively throughout a conservation planning process. Four types of entrepreneur can be identified (business, policy, social, and conservation), each possessing attributes that enable them to identify or create opportunities and take advantage of them. We examined how different types of conservation opportunity manifest in a social–ecological system (the Great Barrier Reef) and how they can be taken advantage of. Our multidisciplinary conceptualization of conservation opportunity strengthens and legitimizes the concept.  相似文献   

16.
The extinction of many species can only be inferred from the record of sightings of individuals. Solow et al. (2012, Uncertain sightings and the extinction of the Ivory‐billed Woodpecker. Conservation Biology 26: 180–184) describe a Bayesian approach to such inference and apply it to a sighting record of the Ivory‐billed Woodpecker (Campephilus principalis). A feature of this sighting record is that all uncertain sightings occurred after the most recent certain sighting. However, this appears to be an artifact. We extended this earlier work in 2 ways. First, we allowed for overlap in time between certain and uncertain sightings. Second, we considered 2 plausible statistical models of a sighting record. In one of these models, certain and uncertain sightings that are valid arise from the same process whereas in the other they arise from independent processes. We applied both models to the case of the Ivory‐billed Woodpecker. The result from the first model did not favor extinction, whereas the result for the second model did. This underscores the importance, in applying tests for extinction, of understanding what could be called the natural history of the sighting record. Sobre Avistamientos Inciertos e Inferencia de la Extinción  相似文献   

17.
Abstract: Assessment of abundance, survival, recruitment rates, and density (i.e., population assessment) is especially challenging for elusive species most in need of protection (e.g., rare carnivores). Individual identification methods, such as DNA sampling, provide ways of studying such species efficiently and noninvasively. Additionally, statistical methods that correct for undetected animals and account for locations where animals are captured are available to efficiently estimate density and other demographic parameters. We collected hair samples of European wildcat (Felis silvestris) from cheek‐rub lure sticks, extracted DNA from the samples, and identified each animals’ genotype. To estimate the density of wildcats, we used Bayesian inference in a spatial capture‐recapture model. We used WinBUGS to fit a model that accounted for differences in detection probability among individuals and seasons and between two lure arrays. We detected 21 individual wildcats (including possible hybrids) 47 times. Wildcat density was estimated at 0.29/km2 (SE 0.06), and 95% of the activity of wildcats was estimated to occur within 1.83 km from their home‐range center. Lures located systematically were associated with a greater number of detections than lures placed in a cell on the basis of expert opinion. Detection probability of individual cats was greatest in late March. Our model is a generalized linear mixed model; hence, it can be easily extended, for instance, to incorporate trap‐ and individual‐level covariates. We believe that the combined use of noninvasive sampling techniques and spatial capture‐recapture models will improve population assessments, especially for rare and elusive animals.  相似文献   

18.
Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life‐history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing. Efectos de la Densidad de Poblaciones Humanas y la Proximidad del Mercado sobre Peces de Arrecifes de Coral Vulnerables a la Extinción  相似文献   

19.
Abstract: The Iberian lynx (Lynx pardinus) may be the first charismatic felid to become extinct in a high‐income country, despite decades of study and much data that show extinction is highly probable. The International Union for Conservation of Nature categorizes it as critically endangered; about 200 free‐ranging individuals remain in two populations in southern Spain. Conservation measures aimed at averting extirpation have been extensively undertaken with 4 of the former 10 Iberian lynx populations recorded 25 years ago. Two of the four populations have been extirpated. The number of individuals in the third population have declined by 83%, and in the fourth the probability of extirpation has increased from 34% to 95%. Major drivers of the pending extinction are the small areas to which conservation measures have been applied; lack of incorporation of evidence‐based conservation, scientific monitoring, and adaptive management into conservation efforts; a lack of continuity in recovery efforts, and distrust by conservation agencies of scientific information. In contrast to situations in which conservation and economic objectives conflict, in the case of the Iberian lynx all stakeholders desire the species to be conserved.  相似文献   

20.
Desert fishes are some of the most imperiled vertebrates worldwide due to their low economic worth and because they compete with humans for water. An ecological complex of fishes, 2 suckers (Catostomus latipinnis, Catostomus discobolus) and a chub (Gila robusta) (collectively managed as the so‐called three species) are endemic to the U.S. Colorado River Basin, are affected by multiple stressors, and have allegedly declined dramatically. We built a series of occupancy models to determine relationships between trends in occupancy, local extinction, and local colonization rates, identify potential limiting factors, and evaluate the suitability of managing the 3 species collectively. For a historical period (1889–2011), top performing models (AICc) included a positive time trend in local extinction probability and a negative trend in local colonization probability. As flood frequency decreased post‐development local extinction probability increased. By the end of the time series, 47% (95% CI 34‐61) and 15% (95% CI 6‐33) of sites remained occupied by the suckers and the chub, respectively, and models with the 2 species of sucker as one group and the chub as the other performed best. For a contemporary period (2001?2011), top performing (based on AICc) models included peak annual discharge. As peak discharge increased, local extinction probability decreased and local colonization probability increased. For the contemporary period, results of models that split all 3 species into separate groups were similar to results of models that combined the 2 suckers but not the chub. Collectively, these results confirmed that declines in these fishes were strongly associated with water development and that relative to their historic distribution all 3 species have declined dramatically. Further, the chub was distinct in that it declined the most dramatically and therefore may need to be managed separately. Our modeling approach may be useful in other situations in which targeted data are sparse and conservation status and best management approach for multiple species are uncertain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号