首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cr(Ⅵ)在Fe(Ⅲ)-柠檬酸盐体系中紫外光还原研究   总被引:2,自引:1,他引:1  
研究了在紫外光照射下,Fe(Ⅲ)-柠檬酸盐溶液对Cr(Ⅵ)的光还原反应.同时,考察了溶液pH值、Fe(Ⅲ)浓度、柠檬酸盐浓度、Cr(Ⅵ)初始浓度对光还原效率的影响,并分析了光还原反应的动力学.研究结果表明,Fe(Ⅲ)-柠檬酸盐体系能光还原Cr(Ⅵ),在pH为2.0~6.0的范围内,Cr(Ⅵ)的还原率随着溶液初始pH值的降低而增大.当pH值为2.0、Fe(Ⅲ)浓度为10μmol·L-1、柠檬酸盐浓度为250μmol·L-1及Cr(Ⅵ)初始浓度为19.2μmol·L-1时,光照反应8min后Cr(Ⅵ)的最大还原率达到100%,但当pH值增加到6.0时,Cr(Ⅵ)的最大还原率下降到19%;当Cr(Ⅵ)的初始浓度在9.6~96.0μmol·L-1的范围内时,Cr(Ⅵ)光还原反应的初始速率随着Fe(Ⅲ)、柠檬酸盐(cit3)、Cr(Ⅵ)初始-浓度的增加而增加.表观动力学方程为:-dCCr(Ⅵ)/dt=0.1019[Cr(Ⅵ)]0.[Fe(Ⅲ)]0.[cit3]0..536-25  相似文献   

2.
研究了在紫外光照射下,Fe(Ⅲ)-柠檬酸盐溶液对Cr(Ⅵ)的光还原反应.同时,考察了溶液pH值、Fe(Ⅲ)浓度、柠檬酸盐浓度、Cr(Ⅵ)初始浓度对光还原效率的影响,并分析了光还原反应的动力学.研究结果表明,Fe(Ⅲ)-柠檬酸盐体系能光还原Cr(Ⅵ),在pH为2.0~6.0的范围内,Cr(Ⅵ)的还原率随着溶液初始pH值的降低而增大.当pH值为2.0、Fe(Ⅲ)浓度为10μmol·L-1、柠檬酸盐浓度为250μmol·L-1及Cr(Ⅵ)初始浓度为19.2μmol·L-1时,光照反应8min后Cr(Ⅵ)的最大还原率达到100%,但当pH值增加到6.0时,Cr(Ⅵ)的最大还原率下降到19%;当Cr(Ⅵ)的初始浓度在9.6~96.0μmol·L-1的范围内时,Cr(Ⅵ)光还原反应的初始速率随着Fe(Ⅲ)、柠檬酸盐(cit3)、Cr(Ⅵ)初始-浓度的增加而增加.表观动力学方程为:-dCCr(Ⅵ)/dt=0.1019[Cr(Ⅵ)]0.[Fe(Ⅲ)]0.[cit3]0..536-25  相似文献   

3.
孙杰  曾沛  张晗 《环境科学学报》2014,34(12):3017-3021
将易生物降解的天然螯合剂乙二胺-N,N'-二琥珀酸(EDDS)与Fe(Ⅲ)结合形成Fe(Ⅲ)-EDDS体系并用于处理水中Cr(Ⅵ).在紫外光照射下利用该体系对Cr(Ⅵ)进行光还原,考察了溶液p H值、Fe(Ⅲ)-EDDS和Cr(Ⅵ)的初始浓度对Cr(Ⅵ)去除率的影响.结果表明,UV/Fe(Ⅲ)-EDDS体系对Cr(Ⅵ)有光还原作用,且紫外光是反应进行的必要条件.在p H为3.0~8.0的范围内,反应顺利进行,且溶液的p H值越小,Cr(Ⅵ)的还原效果越好,去除率越高.Fe(Ⅲ)-EDDS浓度的增加对Cr(Ⅵ)还原有促进作用,Fe(Ⅲ)-EDDS浓度在0.10~0.30 mmol·L-1之间时,随着Fe(Ⅲ)-EDDS浓度的增大,Cr(Ⅵ)的还原率增大;当溶液中Fe(Ⅲ)-EDDS浓度不变,Cr(Ⅵ)浓度在5~20 mg·L-1之间时,Cr(Ⅵ)的去除率随其浓度的增加而降低.  相似文献   

4.
在250 W照明金属卤化物灯(λ≥313 nm)照射下,Fe(Ⅲ)-OH配合物能同时引发水中Cr(Ⅵ)的光还原和偶氮染料甲基橙的光氧化,并且同时Cr(Ⅵ)光还原和甲基橙光氧化效率都较Fe(Ⅲ)-OH配合物单独作用下的效率有明显提高.在c(Fe(Ⅲ)),c(Cr(Ⅵ))和c(甲基橙)为25~200 μmol/L时,pH=3.0是最佳值;c(Fe(Ⅲ))的增加同时有利于Cr(Ⅵ)光还原和甲基橙光氧化;c(Cr(Ⅵ))为25 μmol/L时,其自身光还原的初始速率最大,甲基橙光氧化反应初始速率则随c(Cr(Ⅵ))和c(甲基橙)的增大而减小.   相似文献   

5.
应用纳米零价铁处理模拟含Cr(Ⅵ)无氧地下水   总被引:11,自引:6,他引:5  
武甲  田秀君  王锦  景传勇 《环境科学》2010,31(3):645-652
研究了实验室自制的纳米零价铁处理模拟含Cr(Ⅵ)无氧地下水的影响因素、吸附动力学,并结合体系中Fe2+浓度、氧化还原电位、Zeta电位和理论计算得到的pe-pH图对纳米零价铁去除Cr(Ⅵ)的机制进行了探讨.实验结果表明,纳米零价铁对Cr(Ⅵ)的去除率随着初始Cr(Ⅵ)/Fe质量比的升高而降低.当溶液的pH为7.0,初始Cr(Ⅵ)/Fe质量比为0.025、0.050、0.075和0.100时,相应地Cr(Ⅵ)的去除率分别为100.0%、85.6%、72.7%和39.6%.酸性条件更有利于纳米零价铁对Cr(Ⅵ)的去除,当初始Cr(Ⅵ)/Fe质量比为0.100,溶液的pH为3.0、5.0、7.0、9.0和11.0时,体系中Cr(Ⅵ)的去除率分别为73.4%、57.6%、39.6%、44.1%和41.2%.纳米零价铁去除Cr(Ⅵ)的过程符合拟二级动力学方程.当溶液的pH为7.0,初始Cr(Ⅵ)/Fe质量比为0.025时,吸附速率常数(k)最大,为9.76×10-3g.(mg.m in)-1.Cr2O27-吸附到纳米零价铁表面后被迅速地还原为Cr3+,生成的Cr3+与纳米零价铁表面的FeOOH结合生成Cr-Fe膜.而Cr-Fe膜将阻断电子在纳米零价铁与Cr2O27-之间的传输,Cr(Ⅵ)得不到还原,从而纳米零价铁对Cr2O27-的去除以吸附为主.  相似文献   

6.
采用硼氢化钠液相还原法制备纳米铁(nZVI)和多种负载型纳米铁,将其分别用于处理初质量浓度50 mg/L的Cr(Ⅵ)溶液,结果显示膨润土负载纳米铁(B-nZVI)效果最好,去除率可达100%。ESEM和BET表征结果表明:膨润土作为载体可以有效地减弱纳米铁颗粒的团聚,增大纳米铁的比表面积。XRD显示新制备的B-nZVI谱图中出现了明显的Fe0特征峰,而反应后的谱图则证明了Fe(Ⅲ)和Cr(Ⅲ)的存在。动力学研究表明:B-nZVI对水溶液中的Cr(Ⅵ)的还原遵循伪一级反应动力学。  相似文献   

7.
利用复合反应动力学探讨天然Cr(Ⅵ)生物吸附材料的Cr(Ⅵ)-TCr联合动力学建模问题,以蚕沙为例,用拟合参数定量化评价蚕沙除Cr(Ⅵ)和TCr的能力,并推导建立Cr(Ⅵ)和TCr共参数动力学方程组模型。通过动力学批量实验,探究不同初始pH下蚕沙-Cr(Ⅵ)体系中溶液pH、Cr(Ⅵ)、TCr随时间的变化规律,并确定去除Cr(Ⅵ)与TCr的最佳工作pH。结果显示:最佳工作pH为2.0,此时总铬的平衡吸附量为2.37 mg/g;共参方程组拟合偏差小于Cr(Ⅵ)与TCr一级动力学方程的和;不同初始pH下拟合参数提示Cr(Ⅲ)的解吸导致其残留,且残留量随pH的升高而减小;Cr(Ⅵ)去除速率常数的对数与溶液氢离子的变化量存在线性关系。  相似文献   

8.
铁氧化物改性黏土对Cr(Ⅵ)的吸附性能研究   总被引:2,自引:0,他引:2  
利用铁氧化物对黏土进行了包覆改性,采用静态吸附法对该改性黏土吸附Cr(Ⅵ)的特性进行了研究,并考虑了反应时间、pH、浓度、温度对吸附的影响。实验结果表明,整个吸附过程基本在3h内完成;改性黏土对Cr(Ⅵ)的吸附量随溶液初始pH的增大而明显减小;随着溶液初始浓度和温度的增大而增大。同时,在初始pH为3.0的条件下,研究了改性黏土吸附Cr(Ⅵ)的动力学和热力学特性,结果表明,改性黏土对Cr(Ⅵ)吸附能较好地符合准二级动力学方程和Langmuir等温式。由Langmuir等温式得出,在293K、初始pH为3.0条件下的单层饱和吸附量为12.91 mg•g-1。确定了改性黏土吸附Cr(Ⅵ)的热力学参数,表明该吸附过程是一个吸热的自发过程。与原土的对比实验表明,改性黏土对Cr(Ⅵ)的吸附能力大大增强。  相似文献   

9.
K+对Fe(Ⅵ)生成的稳定促进作用和机理研究   总被引:1,自引:0,他引:1  
研究了在生成高铁酸盐反应过程中K 对Fe(Ⅵ)的稳定促进作用和机理.结果表明,当反应温度大于50℃时.K 比Na 更有利于高铁酸盐的生成.K 促进高铁酸盐溶液生成的最佳反应温度为65℃.在生成高铁酸盐反应过程中,增加K 浓度能提高高铁酸盐的产率,并且随着硝酸铁投加量的增加,K 影响显著.在硝酸铁投加量为85 g/L时,采用4.4 mol/L KOH制备的Fe(Ⅵ)浓度为0.05 mol/L;加入2 mol/L K 后,Fe(Ⅵ)浓度增加到0.15 mol/L.K 对高铁酸盐溶液生成浓度的影响在硝酸铁投加量大于75 g/L,反应温度低于55℃,CIO-浓度低于1.16 mol/L时较为显著.K 在一定程度上可替代部分碱度,降低OH-用量.在反应过程中K 能包裹在FeO24-周围,减少Fe3 与FeO24- 接触,从而减缓Fe3 对FeO24-的催化分解作用;同时K 能与FeO24-生成K2 FeO4)晶体沉淀析出,降低溶液中FeO24-浓度,Fe(Ⅵ)分解速率减缓,稳定性增加,Fe(Ⅵ)生成浓度增加.  相似文献   

10.
烟束曲霉菌丝球对Cr(Ⅵ)的去除-还原与吸附作用   总被引:2,自引:0,他引:2  
罗隽  胡勇有  仲海涛 《环境科学学报》2007,27(10):1585-1592
采用投加烟束曲霉(Aspergillus fumisynnematus)菌丝球的方法去除含铬废水中的Cr(Ⅵ),通过研究模拟含铬废水中Cr(Ⅵ)与总Cr浓度及pH值的变化规律来确定烟束曲霉菌丝球对Cr(Ⅵ)的去除作用.结果表明,烟束曲霉菌丝球对Cr(Ⅵ)的去除作用包括还原与吸附,以还原作用为主,兼有一定程度的吸附.适宜条件(30℃,150 r·min-1,pH=1.30,投加量10.0 g)下菌丝球能在48 h内将100 mL浓度为10~200 mg·L-1Cr(Ⅵ)溶液中的Cr(Ⅵ)全部去除,其中对总Cr的吸附率为30%~50%,对Cr(Ⅵ)的还原率则达到了99%以上,吸附平衡后解吸出来的Cr的形态95%以上为Cr(Ⅲ).考察了溶液初始pH值、Cr(Ⅵ)初始浓度、菌丝球投加量及温度对菌丝球去除Cr(Ⅵ)作用的影响.结果表明,菌丝球只有在低pH值时才能达到对Cr(Ⅵ)较好的去除效果.溶液初始pH值及Cr(Ⅵ)初始浓度的降低、菌丝球投加量及温度的升高均能提高菌丝球对Cr(Ⅵ)的去除率,溶液初始pH值的降低及菌丝球投加量的增加均可提高菌丝球对总Cr的吸附率,温度则主要通过改变菌丝球的结构形态来影响菌丝球对总Cr的吸附作用.菌丝球对Cr(Ⅵ)及Cr(Ⅲ)均存在吸附作用,吸附在菌丝球上的Cr(Ⅵ)在酸性环境下易被还原成Cr(Ⅲ).  相似文献   

11.
零价纳米铁吸附去除水中六价铬的研究   总被引:1,自引:0,他引:1  
利用液相还原法制备的零价纳米铁(nZVI)进行了去除水中Cr(Ⅵ)的实验研究.结果表明,nZVI对Cr的去除效果明显优于还原铁粉和粉末活性碳;pH值越小、初始Cr浓度越低、nZVI放置时间越短及投加量越大均有利于水中Cr(Ⅵ)的去除,最佳去除率近100%;反应动力学拟合结果表明,nZVI去除六价铬符合准二级动力学模型;反应后nZVI颗粒的扫描电镜及电子能谱结果显示Cr占12.02%(wt),结合对反应溶液中Cr(Ⅵ)和Cr(Ⅲ)分析,说明吸附、还原与共沉淀可能是nZVI去除水中六价铬的主要机理.  相似文献   

12.
采用原位沉积技术将Fe(Ⅲ)负载于铜绿假单胞菌(Pseudomonas aeruginosa,简称Pa)表面制备了Fe(Ⅲ)与细菌的复合体(Fe-Pa),研究了Fe-Pa对水溶液中Cr(Ⅵ)的吸附特性,探讨了最佳合成条件、Fe-Pa投加量、溶液pH值、时间和Cr(Ⅵ)初始浓度等因素对Cr(Ⅵ)吸附效果的影响,同时利用SEM、FT-IR、XPS和Zeta电位对Fe-Pa进行表征分析.吸附实验结果显示,Fe(Ⅲ)浓度为600 mg·L~(-1)、细菌投加量为0.5 g·L~(-1)制备的Fe-Pa效果最佳;Fe-Pa去除Cr(Ⅵ)适宜于酸性条件进行;Fe-Pa对Cr(Ⅵ)的吸附速率较快,60 min内可达到吸附平衡,为自发的吸热吸附,且符合准二级动力学和Langmuir等温模型.表征结果表明,Fe(Ⅲ)成功地负载到铜绿假单胞菌上,为吸附Cr(Ⅵ)提供更多的活性位点,主要机制为静电吸附作用、络合作用和还原作用.经过4次吸附/再生后,Fe-Pa对Cr(Ⅵ)的吸附能力仍在72%以上,表明Fe-Pa具有较好的重复使用性.  相似文献   

13.
为解决纳米级零价铁(nZVI)在环境中易团聚、易氧化的问题,强化其去除水中Cr(Ⅵ)的能力,选择非离子型表面活性剂聚乙烯吡咯烷酮(PVP)和阴离子表面活性剂油酸钠(NaOA)同时对nZⅥ进行修饰.同时,通过对比不同pH值、材料干湿状态、初始浓度及共存离子条件下的反应效果,结合材料的XRD和XPS表征、动力学实验和25℃等温线的拟合进行机理分析.结果表明:酸性条件有利于Cr(Ⅵ)的去除;材料的干湿状态对去除效率影响较大;材料去除水中Cr(Ⅵ)可在3 h内达到反应平衡,去除效率在90%以上,实验条件下最大去除量为183.1 mg·g~(-1),反应过程符合准二级动力学模型及Langmuir模型;反应过程中Cr(Ⅵ)大部分转化为Cr(Ⅲ).  相似文献   

14.
该文通过沉淀法制备了FeS,并利用SEM及XRD对其表征,通过批实验进行了FeS去除水中Cr(Ⅵ)的研究,主要考察了温度、pH、FeS投加量及初始Cr(Ⅵ)浓度对Cr(Ⅵ)去除效率的影响。结果表明:Cr(Ⅵ)的去除效率随着温度的升高以及溶液pH值的降低而升高;当Cr(Ⅵ)为30mg/L时,FeS的最佳投加量为0.2g/L。FeS与Cr(Ⅵ)的反应符合假一级反应动力学模型,表观活化能为21.78kJ/mol。  相似文献   

15.
采用化学沉淀法制备纳米级Fe和纳米级Ni/Fe,利用制备的纳米催化剂对六价铬[Cr(Ⅵ)]与对硝基氯苯(p-NCB)进行同步修复研究.主要探讨纳米级Fe及纳米级Ni/Fe对Cr(Ⅵ)和p-NCB同步修复过程中,受污染水体中Cr(Ⅵ)和对硝基氯苯(p-NCB)的相互影响.实验表明,纳米级Fe可将p-NCB降解为对氯苯胺(p-CAN),并不能进一步脱氯,Cr(Ⅵ)与p-NCB的降解存在着竞争关系.纳米级Ni/Fe双金属应用于p-NCB和Cr(Ⅵ)同步修复,可以取得良好的修复效率,反应产物为Cr(Ⅲ)和苯胺,并不产生中间产物.Ni(Ⅱ)浓度的增加,可以促进脱氯反应的进行,最佳Ni/Fe质量比为1:50.而Cr(Ⅵ)、p-NCB初始浓度增加会导致脱氯率的下降.Cr(Ⅵ)浓度为20 mg/L时,对应的最大脱氯效率为43.0%,而p-NCB的浓度为40 mg/L时,对应的六价铬还原效率为71.4%.  相似文献   

16.
通过批实验研究了Al(Ⅲ)对糖浆溶液化学还原六价铬反应的影响,揭示了不同条件下Al(Ⅲ)对六价铬还原反应动力学的影响.结果表明:Al(Ⅲ)能够促进糖浆溶液还原六价铬反应进行;其作用机制是Al(Ⅲ)与糖浆溶液中有机还原物质及Cr(Ⅵ)反应形成三者的络合物,降低糖浆中多酚等有机还原物质还原Cr(Ⅵ)的反应活化能,提高六价铬还原反应速率.Al(Ⅲ)存在时,该六价铬还原反应符合准一级动力学反应;pH 2.0,2.5,3.0,3.5时,添加Al(Ⅲ)的实验组中六价铬反应速率常数比对应的空白对照组中反应速率常数分别增加了0.0251,0.0139,0.0058,0.0048h~(-1).添加Al(Ⅲ)前后反应体系中六价铬还原的反应活化能(Ea)分别为66.38,62.80kJ/mol.当糖浆浓度不足时,Al(Ⅲ)能够提高糖浆溶液还原六价铬的反应去除率.  相似文献   

17.
纳米零价铁(nZVI)具有对六价铬[Cr(Ⅵ)]还原去除能力,但其存在易老化和易团聚的问题,会大大降低对Cr(Ⅵ)反应活性.本文将具有异化铁还原能力的MR-1引入到老化生物质炭负载纳米零价铁(nZVIB)除Cr(Ⅵ)的反应体系中.研究厌氧条件下老化后nZVI/B与MR-1之间对Cr(Ⅵ)去除存在的协同效应机制,以及反应体系中pH条件,初始Cr(Ⅵ)浓度和MR-1菌浓度对这种协同效应的影响.结果表明,在pH为7时体系有明显协同效应,去除率提高51.3%.并且该协同效应随初始Cr(Ⅵ)增加而减弱,随着MR-1浓度增加而增强.固相分析结果表明Cr(Ⅵ)主要以还原为Cr(Ⅲ)的形式被固定.MR-1的异化铁还原能力起到了重要的作用,通过零价铁表面铁氧化物老化层还原,为反应体系提供了大量还原性的Fe(Ⅱ),同时也释放了内部nZVI的反应活性位点,而生物质炭不仅分散了nZVI还介导MR-1的胞外电子传递过程,从而增强了体系对Cr(Ⅵ)协同钝化能力.本研究为有效解决nZVI长期使用过程中的老化问题提供了新思路.  相似文献   

18.
采用两步液相还原法制备了活性炭及硫化双因素改性的纳米零价铁材料(S-nZVI@AC),并采用SEM-EDS、BET、XPS对材料表面形貌、元素特征等进行了表征分析.结果表明,纳米零价铁优先负载于活性炭较小孔洞中,而硫化则以材料表面纳米零价铁为主.以2 g·L-1的投加量处理200 mL浓度为50 mg·L-1的Cr(Ⅵ)溶液,探究了S-nZVI@AC的反应特性.结果表明双因素改性协同促进了材料中铁的高效稳定溶出,反应过程受化学吸附限速.在一定范围内,Cr(Ⅵ)的去除率随Fe/C质量比、S/Fe物质的量的比及溶液初始pH各因素水平的上升,呈现出先升高后降低的趋势.采用响应面法探讨上述3个因素的交互作用并进行条件优化,结果表明:各因素对材料去除Cr(Ⅵ)效率均有显著影响,强弱顺序为S/Fe物质的量的比>Fe/C质量比>pH.其中,Fe/C质量比与pH的交互作用以及S/Fe物质的量的比与pH的交互作用对材料去除Cr(Ⅵ)效率影响显著.在最佳条件下(Fe/C质量比为1.16,S/Fe物质的量的比为0.12,pH为5.92),S-nZVI@...  相似文献   

19.
甘蔗渣负载纳米零价铁吸附剂去除水中Cr(Ⅵ)的研究   总被引:2,自引:1,他引:1  
以改性甘蔗渣做载体,采用液相还原法制备负载型纳米零价铁吸附剂,研究了原甘蔗渣、改性甘蔗渣、纳米零价铁及纳米零价铁/改性甘蔗渣4种物质对于水中Cr(Ⅵ)的吸附特性,探讨了反应时间、溶液pH值、固液比、Cr(Ⅵ)初始浓度等因素对于Cr(Ⅵ)吸附效果的影响。实验结果表明:4种吸收剂中,纳米零价铁/甘蔗渣的吸附能力最好,在pH=4,固液比=0.5 g/L,Cr(Ⅵ)初始浓度小于25 mg/L时,可全部去除Cr(Ⅵ)。并对甘蔗渣基纳米零价铁和Cr(Ⅵ)的反应机理进行了初探。  相似文献   

20.
为了探索Fe3 催化氧化S(Ⅳ)的反应动力学规律,实验考察了pH、Fe3 浓度、S(Ⅳ)浓度、温度对反应动力学的影响.结果表明,Fe3 催化氧化S(Ⅳ)过程中动力学控制步骤为Fe2 的氧化,且pH在0~3范围内,氧化速率随着H 浓度的升高而降低;Fe3 浓度为0~0.01 mol·L-1时,氧化速率随Fe3 浓度的增加而加快,继续增加Fe3 浓度,氧化速率没有明显变化;S(Ⅳ)浓度为0~0.1 mol·L-1时,氧化速率随S(Ⅳ)浓度的增加而加快.由实验数据得到了氧化速率公式.反应速率在20~40 ℃范围内随温度升高而加快,反应活化能约为13kJ·mol-1.在实验基础上推测反应为自由基链反应机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号