首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentration of hardly biodegradable humic substances in sludge would relatively increase after anaerobic digestion due to the degradation of other organic substances. Thus, extracting humic substances from digested sludge as a liquid organic fertilizer was tested using alkaline treatment and ultrafiltration, and the dewaterability of the residual sludge was also tested. The results showed that the contents of humic acids and fulvic acids in digested sludge were 16.4 mg/g total solids and 88.9 mg/g total solids, respectively, and most of the humic acids had a molecular weight higher than 50 kDa. Hence, the membrane with a molecular weight cut-off of 50 kDa was used for humic acids recovery from the centrifugation supernatant after alkaline sludge disintegration with an optimum NaOH dose of 0.1 mol/L. Under these conditions, the total concentration of humic acids and fulvic acids was 4239 mg/L in the retention solution, which can be further concentrated and processed for liquid fertilizer. The total recovery rate of sludge humic acids and fulvic acids was about 25 %. The dewatering performance of the residual sludge was better than that of the untreated sludge when the residual sludge was diluted to a water content of 95–98 % and then conditioned with polyacrylamide at a dose of 10–30 mg/L.  相似文献   

2.
An evaluation of various metal purification processes subsequent to the leaching processing of the neodymium (Nd) product from neodymium–iron–boron (Nd–Fe–B) magnets has been conducted. These post-leaching purification processes included precipitation; replacement and electrolysis were studied in order to check the purity of the recovered neodymium. A hydrometallurgical investigation was adopted to digest the metal content of the scrap Nd–Fe–B magnets for the recovery of valuable Nd metal and other metals such as Fe, B, Co and Ni. The effect of leaching conditions such as solid-to-liquid ratio and temperature were optimized and 100 % Nd, 100 % Fe, 100 % B and 85.87 % Co leaching efficiencies were achieved under these conditions. The coating material of the magnet, Ni, achieved 50 % impregnation after increasing the reaction temperature to 70 °C. The metals present in the optimal leaching solution were recovered 99 % by pH adjustment. However, the replacement had the highest separation efficiency for the recovery of Nd metal. Further, the optimal leaching Nd–Fe–B solution was subjected to the electrolysis processes in order to verify the recovery efficiency for all metals.  相似文献   

3.
Urban sewage sludge treatment has become a severe problem due to its large quantities and enrichment with heavy metals, refractory organic contaminants and pathogenic bacteria. Accordingly, it is essential to develop an effective and low-cost intense dewatering technique to decrease sludge water content so that it can be easily treated by subsequent incineration, landfilling or composting. In this study, a new intense sludge dewatering technique using conditioner of coagulant and flocculant (polyacrylamide) mixture and the diaphragm filter press was developed and investigated systematically by measuring the water content, calorific value and coliform bacteria in the sludge and investigating the dewatering efficiency under different conditions. The results showed that the water content of the sludge was effectively reduced from 80 % to the minimum of 43.6 % by adding conditioners and subsequent dewatering using the diaphragm press. Moreover, the low calorific value of dewatered sludge increased significantly from that of the original sludge, and was conducive to subsequent incineration. The water content of the dewatered sludge cake decreased to less than 25 % after being kept in the open air for 9 days. Therefore, it is proposed that this technique be applied to large-scale engineering applications.  相似文献   

4.
Construction materials as a waste management solution for cellulose sludge   总被引:1,自引:0,他引:1  
Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills.From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale. Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled.The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment.This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.  相似文献   

5.
In our previous work, the primary sludge from wastewater treatment plants was shown to contain a considerable amount of cellulose (about 20%, based on suspended solids) owing to the discharge of toilet paper. For the purpose of using the cellulose as a biomass resource, this study examined a simple method for its recovery. When fibrous cellulose was suspended in 0.3% sulfuric acid and autoclaved at 130°C for 60 min, 85%–88% of the initial solids remained without dissolving. Under these conditions, an activated sludge sample not containing cellulose was strongly hydrolyzed and only 7% of the initial solids remained. The prescribed amounts of cellulose added to the activated sludge sample were quantitatively recovered by the autoclaving treatment. In the treatment of primary sludge containing >20% cellulose, residual solids with relatively high levels of cellulose (>69%) could be obtained. The results indicate that the method proposed here could recover cellulose practically from waste sewage sludge for biomass utilization. Received: July 17, 2000 / Accepted: July 4, 2001  相似文献   

6.
Iran is the second largest stockholder of construction stones with 10 % of world production ;and there are more than 4000 stone cutting and fabrication industries (SCFIs). In the processing of raw stones, a considerable part of stone is turned into waste. Generated wastes include excess parts of different stones and sludge. The present paper reviews the state of SCFIs waste management using multiple data sources including site, analysis of effluent and sludge samples, and conducting interviews with people who are involved in 286 SCFIs in Qom and Tabriz. The results revealed that currently almost 35 to 52.5 % of raw stones were converted to solid wastes depending on stone cutting and processing methods, type of stones and their quality, which seemed a high percentage. Also, the effluents between 0.8 and 2.8 m3 were generated per ton of processed stone. Based on the analysis of heavy metals with atomic absorption spectroscopy, sludge samples contained a considerable amount of Pb, Cu, Cr, and Cd. It was also found that the lack of specific recycling, reuse and disposal programs and suitable supervision has led to uncontrolled disposal of stone wastes and sludge in different areas. However, there are good opportunities for reuse and recycling of the SCFIs wastes.  相似文献   

7.
In this paper, emission and distribution behavior of six heavy metals (As, Cd, Cr, Ni, Pb, and Hg), particulate matter and mass distribution of mercury within the different streams of a fluidized bed sewage sludge incinerator are presented. At the inlet of air pollution control devices (APCDs); Cd, Cr, Ni and Pb were mainly enriched in coarse particles; comparatively As content was higher in fine particles (<PM2.5). The concentration of heavy metals in total particulate matter and PM2.5, at the inlet of APCDs, were in the order of Cr > Ni > Pb > As > Cd. Mercury was almost always distributed in flue gas. Metals, other than mercury, were efficiently removed in APCDs and their concentrations in bottom ash, with fly ash being higher, whereas for that in wastewater, then waste sand was lesser. Overall mercury removal efficiency of APCDs was 98.6 %. More than 83.3 % of mercury was speciated into oxidized form at the inlet of APCDs, attributed by higher chlorine content in sludge. Mercury was mainly distributed in wastewater (78.4 %), wastewater from a spray dry reactor (16.8 %), fly ash in a hopper (3.4 %) and flue gas (1.4 %). This result is one of the first for data to be obtained; more experiments are required to control emission from such sources.  相似文献   

8.
In this study, a very promising way of treating and recycling spent nickel catalysts of fertilizer plants in Vietnam was proposed. Firstly, nickel was recovered from spent catalyst using HNO3—leaching process. Results show that nickel recovery of over 90% with a purity of over 90% can be achieved with HNO3 2.1–2.5 M at 100?°C in 75 min. The residue after leaching is not considered as a hazardous waste according to the Vietnamese regulations. Then, the leachate solution was used as a precursor to prepare a model catalyst for exhaust gas (CO, HC, NOx) treatment. In comparison with the catalyst prepared from the commercial nickel nitrate solution, the catalyst synthesized from recovered nickel exhibits similar properties and activities. The influence of Ni loading of Ni/alumina catalyst as well as the modification of active phase by some metals addition (Mn, Ba, Ce) was also investigated. It is feasible to modify active phase by transition metals such as Mn, Ba, and Ce for complete oxidation of CO and HC at 270?°C and a reduction of NOx below 350?°C at high volumetric flow condition (GHSV?=?110.000 h?1).  相似文献   

9.
This paper describes a hydrometallurgical process for recovering neodymium (Nd) and dysprosium (Dy) from a magnetic waste sludge generated from the Nd–Fe–B(–Dy) manufacturing process. Phase analysis by XRD study revealed Nd(OH)3 and Fe2O3 as main mineral phases, and chemical analysis by ICP showed the contents of 35.1 wt% Nd, 29.5 wt% Fe, 1.1 wt% Dy and 0.5 wt% B. A solution of 1 M HNO3 + 0.3 M H2O2 was used to dissolve up to 98 % Nd and 81 % Dy, while keeping Fe dissolution below 15 % within 10 min. Fe dissolved in solution was completely removed as Fe(OH)3 at pH 3 followed by precipitation of Nd and Dy with oxalic acid (H2C2O4) and recovered 91.5 % of Nd and 81.8 % of Dy from solution. The precipitate containing Nd and Dy was calcined at 800 °C to obtain Nd2O3 as final product with 68 % purity, and final recovery of 69.7 % Nd and 51 % of Dy was reported in this process.  相似文献   

10.
In the present work, the feasibility of using sludge generated in wastewater treatment plants of textile industry as a partial replacement for clay in the conventional brick manufacturing process is examined. Physico-chemical properties of the sludge and clay were studied. The characteristics of bricks with replacement of sludge (0–50 %) with an increment of 3 % were determined. All the brick samples satisfied the requirements of Indian Standards norms in terms of weight loss on ignition. The bricks with sludge up to 15 % satisfied the prescribed norms for compressive strength and water absorption. Results also showed that the brick weight loss on ignition was mainly attributed to the organic matter content in the sludge being burnt off during the firing process. The characteristics of bricks such as efflorescence, density and weight loss on ignition for bricks with replacement of clayey soil with textile sludge up to 15 % also satisfied the requirements of the Indian Standard. Thus, textile sludge up to 15 % can be effectively added to make brick material.  相似文献   

11.
This paper reports the preparation of cellulose/xanthan gum composite films and hydrogels through gelation with an ionic liquid. Mixtures of cellulose and xanthan gum in desired weight ratios with an ionic liquid, 1-butyl-3-methylimidazolium chloride (BMIMCl), were thinly placed on a Petri dish and heated at 100 °C for 9 h to obtain the solutions. Then, the solutions were left standing at room temperature for 1 day for the progress of gelation. The resulting ion gels were subjected to Soxhlet extraction with ethanol to remove BMIMCl, followed by drying under ambient conditions to obtain the composite films. The crystalline structures of the polysaccharides and the mechanical properties were evaluated by powder X-ray diffraction measurement and tensile testing of the films, respectively. The ion gels in various cellulose/xanthan gum weight ratios, which were prepared in a test tube by the same procedure, were immersed in water for the exchange of disperse media to obtain the cellulose/xanthan gum composite hydrogels. Water contents of all the materials were higher than 90 %. The mechanical properties of the hydrogels were evaluated by compressive testing.  相似文献   

12.
Ash produced from the combustion of livestock manure contains large amounts of phosphorus (P), which is an important resource as a fertilizer. Some studies have extracted and recovered P from incinerated biomass ash using inorganic acid or alkaline agents, which produce wastewater that requires treatment and is expensive due to the cost of chemicals. Livestock manure ash contains not only P, but also water soluble salts, which could be a negative influence on plant growth and shall be preferably removed from the recovered fertilizer. In this study, we removed salinity from cattle manure incineration ash by simple aqueous leaching, while retaining the P content. The optimal condition was a 20 min leaching time at a liquid/solid (L/S) ratio of 10 mL g-ash?1. Under this condition, over 90 % of Cl and 20 % of Na in the original ash was removed, while over 99 % of the P was retained in the leached residue. The leached residue met the fertilizer standard in Japan in terms of citrate soluble fertilizer components and contained few heavy metals. X-ray analyses of the ash indicated that Cl was mainly present as KCl in the original ash, while P was mainly present as Ca compounds in the ash.  相似文献   

13.
This study aimed to identify distribution of metals and to estimate the amount of these metals that can be potentially recovered from incineration residues. First, the partitioning behavior of Cr, Cu, Fe, Cd, Al, Zn, and Pb in bottom ash and fly ash was investigated in one large municipal waste incinerator in Taiwan. In addition, the material flow analysis (MFA) method was used to estimate the material flux of metals within incinerator plant, and to calculate the amount of metal recovery. According to the findings of this study, six metals (Fe, Al, Cu, Zn, Cr, and Pb) concentrated in bottom ash mostly, while Cd existed primarily in fly ash. The weight percentages of Fe (4.49%), Al (5.24%), Cu (1.29%), Zn (2.21%), and Pb (0.58%) in incinerator ash are high, and even higher than the compositions of natural minerals. Finally, the amount of Cr, Cu, Fe, Cd, Al, Zn and Pb that can be potentially recovered from incineration residues will reach 2.69 x 10(2), 1.46 x 10(4), 4.91 x 10(4), 6.92 x 10(1), 5.10 x 10(4), 1.85 x 10(4) and 4.66 x 10(3) ton/yr, respectively.  相似文献   

14.
In this study, dl-malic acid and hydrogen peroxide were used as leaching agents to remove metals from e-waste (printed-circuit boards) and itaconic acid-grafted poly(vinyl alcohol)-encapsulated wood pulp (IA-g-PVA-en-WP) to uptake metals from leachate with high proficiency [11.63 mg g?1; 93.03 % for Cd(II), 11.90 mg g?1; 95.18 % for Pb(II), and 12.14 mg g?1; 97.08 % for Ni(II)]. Metals were recovered from the loaded biosorbent by desorption studies. The standard analytical techniques, such as elemental analysis, Fourier-transform-infrared spectroscopy, scanning electron microscopy, atomic force microscopy, and thermogravimetric analysis, were used to characterize the recovering agent (biosorbent). At equilibrium, the metal uptake data were fitted to Langmuir and D–R isotherms (R 2 > 0.99) significantly, revealing, the homogeneous distribution of active sites on biosorbent’s backbone. The possible mechanism appeared to be ion exchanges of metal ions with H+ together with binding over functionalities (COO?). Dimensionless equilibrium parameter (R L) showed the favourability of metal uptake at lower concentration, while mean adsorption energy (E) certified the physical binding of metal on functionalities which was further confirmed by sticking probability and activation energy parameters. Reusability studies were also conducted to state the performance of biosorbent.  相似文献   

15.
Solid-fuel conversion or gasification study of sewage sludge and energy recovery has become increasingly important because energy recovery and climate change are emerging issues. Various types of catalysts, such as dolomite, steel slag and calcium oxide, were tested for tar reduction during the sewage sludge gasification process. For the experiments on sewage sludge gasification reactions and tar reduction using the catalysts, a fixed bed of laboratory-scale experimental apparatus was set up. The reactor was made of quartz glass using an electric muffle furnace. The sewage sludge samples used had moisture contents less than 6%. The experimental conditions were as follows: sample weight was 20 g and reaction time was 10 min, gasification reaction temperature was from 600 to 800°C, and the equivalence ratio was 0.2. The quantity of catalysts was 2–6 g, and temperatures of catalyst layers were 500–700°C. As the reaction temperature increased up to 800°C, the yields of gaseous products and liquid products increased, whereas char and tar products decreased, showing effects on gas product compositions. These results were considered to be due to the increase of the water-gas reaction and Boudouard reaction. In the case of experiments with catalysts, dolomite (4 g), steel slag (6 g) and calcium oxide (6 g) were used. When the temperature of catalysts increased, the weight of the tar produced decreased with different cracking performances by different catalysts. Reforming reactions were considered to occur on the surface of dolomite, steel slag and calcium oxide, causing cracking of the hydrocarbon structure, which eventually showed reduced tar generation.  相似文献   

16.
Sewage sludge with high organic content is particularly difficult to dewater before disposal in landfill. In this study, different hybrid cement binders were investigated to evaluate their ability to dewater the sewage sludge with high organic content. After 7 days of stabilization, the CASC (Mayenite/Sulfoaluminate cement) hybrid binder showed an excellent efficiency on both water content reduction and strength development; the water content and unconfined compressive strength value of solidified sludge reached 52.43 % and 109.55 kPa, respectively, at 8 % binder/sludge mass rate. The horizontal vibration leaching test (HJ 557-2009) indicated that leachability of heavy metals of the CASC-solidified sludge was far lower than that of non-solidified sludge and CAPC-solidified sludge. Furthermore, SEM and XRD analyses suggested that certain hydrates formed in the solidification process might have accelerated the depletion of interstitial water and strength development in the CASC-solidified sludge.  相似文献   

17.
End-of-life vehicles (ELVs) are increasingly being recognized as a possible future resource pool for rare earth elements (REEs). This study provides the amount of REEs that can be recovered from ELVs in Japan based on dismantling survey, chemical identification and substance flow analysis. The REEs were quantified from common passenger vehicles and hybrid electric vehicles. We targeted 17 REEs in estimation of REE contents in ELVs. Four scenarios were developed to explore the recovery of REEs from ELVs. In these scenarios, NiMH batteries and motors containing NdFeB magnets were identified as target components due to they are main REEs carriers; we focused on interpretation of neodymium (Nd) and dysprosium (Dy) owing to they are two of the most critical REEs. The results suggest that 2700 (±500) tons of REEs can be recovered, of which 520 (±100) tons and 31 (±7) tons will be contributed by Nd and Dy in 2030. Meanwhile, the Dy recovered from ELVs can satisfy 23 % (±6 %) of the demand for NdFeB magnets and NiMH battery cells in automobile production of Japan; the Nd recovered from ELVs can satisfy 49 % (±9 %) of the production demands.  相似文献   

18.
Residues from forest-industry wastewater-treatment systems are treated as waste at many pulp and paper mills. These organic substances have previously been shown to have potential for production of large quantities of biogas. There is concern, however, that the process would require expensive equipment because of the slow degradation of these substances. Pure non-fibrous sludge from forest industry showed lower specific methane production during mesophilic digestion for 19 days, 53 ± 26 Nml/g of volatile solids as compared to municipal sewage sludge, 84 ± 24 Nml/g of volatile solids. This paper explores the possibility of using anaerobic co-digestion with municipal sewage sludge to enhance the potential of methane production from secondary sludge from a pulp and paper mill. It was seen in a batch anaerobic-digestion operation of 19 days that the specific methane production remained largely the same for municipal sewage sludge when up to 50% of the volatile solids were replaced with forest-industry secondary sludge. It was also shown that the solid residue from anaerobic digestion of the forest-industry sludge should be of suitable quality to use for improving soil quality on lands that are not used for food production.  相似文献   

19.
Paper sludge is a waste product from the paper and pulp manufacturing industry that is generally disposed of in landfills. Pyrolysis of paper sludge can potentially provide an option for managing this waste by thermal conversion to higher calorific value fuels, bio-gas, bio-oils and charcoal. This work investigates the properties of paper sludge during pyrolysis and energy required to perform thermal conversion. The products of paper sludge pyrolysis were also investigated to determine their properties and potential energy value. The dominant volatile species of paper sludge pyrolysis at 10 °C/min were found to be CO and CO2, contributing to almost 25% of the paper sludge dry weight loss at 500 °C. The hydrocarbons (CH4, C2H4, C2H6) and hydrogen contributed to only 1% of the total weight loss. The bio-oils collected at 500 °C were primarily comprised of organic acids with the major contribution being linoleic acid, 2,4-decadienal acid and oleic acid. The high acidic content indicates that in order to convert the paper sludge bio-oil to bio-diesel or petrochemicals, further upgrading would be necessary. The charcoal produced at 500 °C had a calorific value of 13.3 MJ/kg.  相似文献   

20.
With reference to the European regulation about the management of End-of-Life Vehicles (ELVs), Directive 2000/53/EC imposes the achievement of a recycling target of 85%, and 95% of total recovery by 2015. Over the last few years many efforts have been made to find solutions to properly manage the waste coming from ELVs with the aim of complying with the targets fixed by the Directive.This paper focuses on the economical evaluation of a treatment process, that includes physical (size and density), magnetic and electrical separations, performed on the light fraction of the automobile shredder residue (ASR) with the aim of reducing the amount of waste to dispose of in a landfill and enhancing the recovery of valuable fractions as stated by the EU Directive. The afore mentioned process is able to enhance the recovery of ferrous and non-ferrous metals of an amount equal to about 1% b.w. (by weight) of the ELV weight, and to separate a high energetic-content product suitable for thermal valorization for an amount close to (but not higher than) 10% b.w. of the ELV weight.The results of the economical assessment led to annual operating costs of the treatment ranging from 300,000 €/y to 350,000 €/y. Since the considered plant treats about 13,500 metric tons of ASR per year, this would correspond to an operating cost of approximately 20–25 €/t. Taking into account the amount and the selling price of the scrap iron and of the non magnetic metal recovered by the process, thus leading to a gain of about 30 €/t per ton of light ASR treated, the cost of the recovery process is balanced by the profit from the selling of the recovered metals. On the other hand, the proposed treatment is able to achieve the fulfillment of the targets stated by Directive 2000/53/EC concerning thermal valorization and reduce the amount of waste generated from ELV shredding to landfill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号