首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ ammonia removal in bioreactor landfill leachate   总被引:11,自引:0,他引:11  
Although bioreactor landfills have many advantages associated with them, challenges remain, including the persistence of NH(3)-N in the leachate. Because NH(3)-N is both persistent and toxic, it will likely influence when the landfill is biologically stable and when post-closure monitoring may end. An in situ nitrogen removal technique would be advantageous. Recent studies have shown the efficacy of such processes; however, they are lacking the data required to enable adequate implementation at field-scale bioreactor landfills. Research was conducted to evaluate the kinetics of in situ ammonia removal in both acclimated and unacclimated wastes to aid in developing guidance for field-scale implementation. Results demonstrate that in situ nitrification is feasible in an aerated solid waste environment and that the potential for simultaneous nitrification and denitrification (even under low biodegradable C:N conditions) in field-scale bioreactor landfills is significant due to the presence of both aerobic and anoxic areas. All rate data fit well to Monod kinetics, with specific rates of removal of 0.196 and 0.117 mgN/day-g dry waste and half-saturation constants of 59.6 and 147 mgN/L for acclimated and unacclimated wastes, respectively. Although specific rates of ammonia removal in the unacclimated waste are lower than in the acclimated waste, a relatively quick start-up of ammonia removal was observed in the unacclimated waste. Using the removal rate expressions developed will allow for estimation of the treatment times and volumes necessary to remove NH(3)-N from recirculated landfill leachate.  相似文献   

2.
A mathematical model simulating the hydrological and biochemical processes occurring in landfilled waste is presented and demonstrated. The model combines biochemical and hydrological models into an integrated representation of the landfill environment. Waste decomposition is modelled using traditional biochemical waste decomposition pathways combined with a simplified methodology for representing the rate of decomposition. Water flow through the waste is represented using a statistical velocity model capable of representing the effects of waste heterogeneity on leachate flow through the waste. Given the limitations in data capture from landfill sites, significant emphasis is placed on improving parameter identification and reducing parameter requirements. A sensitivity analysis is performed, highlighting the model's response to changes in input variables. A model test run is also presented, demonstrating the model capabilities. A parameter perturbation model sensitivity analysis was also performed. This has been able to show that although the model is sensitive to certain key parameters, its overall intuitive response provides a good basis for making reasonable predictions of the future state of the landfill system. Finally, due to the high uncertainty associated with landfill data, a tool for handling input data uncertainty is incorporated in the model's structure. It is concluded that the model can be used as a reasonable tool for modelling landfill processes and that further work should be undertaken to assess the model's performance.  相似文献   

3.
Reaction kinetics at various temperatures for pyrolysis of mixtures of plastic waste [polyethylene(PE) and polystyrene(PS)] are modelled in terms of five types of pyrolysis reaction. The model development is based on the assumption that as plastic wastes are heated in a non-reactive environment they are decomposed homogeneously to various products of gas, oil and char by a first-order rate, irreversible reaction and isothermal condition. Among the five models, the type II model in which the activated polymer exists as an intermediate product is the most accurate in predicting the pyrolysis products of pure PE or pure PS. Also, for mixtures of plastics both type II and IV models can be used to explain the composition of pyrolysis products. Furthermore, from the analysis of variance (ANOVA), the mixing ratio and temperature are shown to be the parameters that have the greatest effect on the pyrolysis reaction of polymer waste mixture. The pyrolysis reaction time for the maximum oil production from PE-PS mixtures is shorter than for PE alone and approaches that of PS alone. Oil production increases with increase of PS content. The optimal temperature for maximum oil production is 600°C for the pyrolysis of 2:8, 5:5 and 1:0 mixtures (w/w) of PE and PS. Oil production for PS alone is constant when the pyrolysis is above 600°C.  相似文献   

4.
The present study is an application of Computational Fluid Dynamics (CFD) to the numerical simulation of landfill aeration systems. Specifically, the CFD algorithms provided by the commercial solver ANSYS Fluent 14.0, combined with an in-house source code developed to modify the main solver, were used. The unsaturated multiphase flow of air and liquid phases and the biochemical processes for aerobic biodegradation of the organic fraction of municipal solid waste were simulated taking into consideration their temporal and spatial evolution, as well as complex effects, such as oxygen mass transfer across phases, unsaturated flow effects (capillary suction and unsaturated hydraulic conductivity), temperature variations due to biochemical processes and environmental correction factors for the applied kinetics (Monod and 1st order kinetics). The developed model results were compared with literature experimental data. Also, pilot scale simulations and sensitivity analysis were implemented. Moreover, simulation results of a hypothetical single aeration well were shown, while its zone of influence was estimated using both the pressure and oxygen distribution. Finally, a case study was simulated for a hypothetical landfill aeration system. Both a static (steadily positive or negative relative pressure with time) and a hybrid (following a square wave pattern of positive and negative values of relative pressure with time) scenarios for the aeration wells were examined. The results showed that the present model is capable of simulating landfill aeration and the obtained results were in good agreement with corresponding previous experimental and numerical investigations.  相似文献   

5.
The mathematical formulations in a one-dimensional compartment model of the biodegradation of organic landfill components are described. The model is designed to switch between anaerobic and aerobic conditions, depending on the local oxygen concentration. The model also includes the effect of environmental factors, such as moisture content, pH, and temperature, on reaction rates. The model includes not only biodegradation processes for carbon compounds (acetate, CO2, CH4), but also for nitrogen compounds involved in nitrification and denitrification due to their significance in landfills. Two example runs to simulate anaerobic and aerobic waste were conducted for a single landfill unit cell by changing the organic content and diffusion coefficient.  相似文献   

6.
The State of México, situated in central México, has a population of about 14 million, distributed in approximately 125 counties. Solid waste management represents a serious and ongoing pressure to local authorities. The final disposal site ("El Socavón") does not comply with minimum environmental requirements as no liners or leachate management infrastructure are available. Consequently, leachate composition or the effects of rain water input on municipal solid waste degradation are largely unknown. The aim of this work was to monitor the anaerobic degradation of municipal solid waste (MSW), simulating the water addition due to rainfall, under two different moisture content regimes (70% and 80% humidity). The study was carried out using bioreactors in both laboratory and pilot scales. The variation of organic matter and pH was followed in the solid matrix of the MSW. The leachate produced was used to estimate the field capacity of the MSW and to determine the pH, COD, BOD and heavy metals. Some leachate parameters were found to be within permitted limits, but further research is needed in order to analyze the leachate from lower layers of the disposal site ("El Socavón").  相似文献   

7.
Sb release characteristics of blast furnace slag, mining waste rock and tailing sand were investigated in static immersion and dynamic leaching test. These three kinds of waste samples were collected from the antimony mine in Lengshuijiang, China, produced in mining smelting process. Effects of solid/liquid ratio, sample size and pH of leaching solution on Sb release characteristics were inspected based on the analysis of scanning electron microscope, pH and EC of leachate. The optimal parameters for Sb leaching of each sample were analyzed. For blast furnace slag and mining waste rock, Sb release contents increased along with the decline of solid/liquid ratio. The maximum accumulative release contents were 42.13, 34.26 mg/kg at the solid/liquid ratio of 1:20. While Sb release content for tailing sand decreased first and then increased with the reduction of solid/liquid ratio. When the solid/liquid ratio was 1:5, the accumulative Sb release content reached the most (24.30 mg/kg). Sb release content of mining waste rock increased with the drop of leaching solution pH, with the highest accumulative release content of 26.01 mg/kg at pH 2.0. Sb release contents of blast furnace slag and tailing sand showed positive correlation with the variation of leaching solution pH. The maximum accumulative release contents of these two samples were 215.91 and 147.83 mg/kg, respectively, when leaching solution pH was 7.0. In summary, Sb release capacity of the three samples in descending order was tailing sand, blast furnace slag and mining waste rock. pH and EC of the leachate in dynamic test varied independently with the initial pH of leaching solution while showing close relationship with mineral hydrolysis in the waste.  相似文献   

8.
The aeration rate is a key process control parameter in the forced aeration composting process because it greatly affects different physico-chemical parameters such as temperature and moisture content, and indirectly influences the biological degradation rate. In this study, the effect of a constant airflow rate on vertical temperature distribution and organic waste degradation in the composting mass is analyzed using a previously developed mathematical model of the composting process. The model was applied to analyze the effect of two different ambient conditions, namely, hot and cold ambient condition, and four different airflow rates such as 1.5, 3.0, 4.5, and 6.0m(3)m(-2)h(-1), respectively, on the temperature distribution and organic waste degradation in a given waste mixture. The typical waste mixture had 59% moisture content and 96% volatile solids, however, the proportion could be varied as required. The results suggested that the model could be efficiently used to analyze composting under variable ambient and operating conditions. A lower airflow rate around 1.5-3.0m(3)m(-2)h(-1) was found to be suitable for cold ambient condition while a higher airflow rate around 4.5-6.0m(3)m(-2)h(-1) was preferable for hot ambient condition. The engineered way of application of this model is flexible which allows the changes in any input parameters within the realistic range. It can be widely used for conceptual process design, studies on the effect of ambient conditions, optimization studies in existing composting plants, and process control.  相似文献   

9.
A model capable of quantifying the potential environmental impacts of agricultural application of composted or anaerobically digested source-separated organic municipal solid waste (MSW) is presented. In addition to the direct impacts, the model accounts for savings by avoiding the production and use of commercial fertilizers. The model is part of a larger model, Environmental Assessment of Solid Waste Systems and Technology (EASEWASTE), developed as a decision-support model, focusing on assessment of alternative waste management options. The environmental impacts of the land application of processed organic waste are quantified by emission coefficients referring to the composition of the processed waste and related to specific crop rotation as well as soil type. The model contains several default parameters based on literature data, field experiments and modelling by the agro-ecosystem model, Daisy. All data can be modified by the user allowing application of the model to other situations. A case study including four scenarios was performed to illustrate the use of the model. One tonne of nitrogen in composted and anaerobically digested MSW was applied as fertilizer to loamy and sandy soil at a plant farm in western Denmark. Application of the processed organic waste mainly affected the environmental impact categories global warming (0.4-0.7 PE), acidification (-0.06 (saving)-1.6 PE), nutrient enrichment (-1.0 (saving)-3.1 PE), and toxicity. The main contributors to these categories were nitrous oxide formation (global warming), ammonia volatilization (acidification and nutrient enrichment), nitrate losses (nutrient enrichment and groundwater contamination), and heavy metal input to soil (toxicity potentials). The local agricultural conditions as well as the composition of the processed MSW showed large influence on the environmental impacts. A range of benefits, mainly related to improved soil quality from long-term application of the processed organic waste, could not be generally quantified with respect to the chosen life cycle assessment impact categories and were therefore not included in the model. These effects should be considered in conjunction with the results of the life cycle assessment.  相似文献   

10.
Two conceptual mixed integer linear optimization models were developed to optimize the haul and transfer of municipal solid waste (MSW) prior to landfilling. One model is based on minimizing time (h/d), whilst the second model is based on minimizing total cost (euro/d). Both models aim to calculate the optimum pathway to haul MSW from source nodes (waste production nodes, such as urban centers or municipalities) to sink nodes (landfills) via intermediate nodes (waste transfer stations). The models are applicable provided that the locations of the source, intermediate and sink nodes are fixed. The basic input data are distances among nodes, average vehicle speeds, haul cost coefficients (in euro/ton km), equipment and facilities' operating and investment cost, labor cost and tipping fees. The time based optimization model is easier to develop, since it is based on readily available data (distances among nodes). It can be used in cases in which no transfer stations are included in the system. The cost optimization model is more reliable compared to the time model provided that accurate cost data are available. The cost optimization model can be a useful tool to optimally allocate waste transfer stations in a region and can aid a community to investigate the threshold distance to a landfill above which the construction of a transfer station becomes financially beneficial. A sensitivity analysis reveals that queue times at the landfill or at the waste transfer station are key input variables. In addition, the waste transfer station ownership and the initial cost data affect the optimum path. A case study at the Municipality of Athens is used to illustrate the presented models.  相似文献   

11.
生物炭对铅离子的吸附性能   总被引:3,自引:0,他引:3       下载免费PDF全文
以废弃松木屑为原料,采用控制热分解法制备了生物炭。运用BET和FTIR等技术对生物炭进行了表征,考察了生物炭对铅离子的吸附效果,并探讨了吸附机理。表征结果显示,700℃氨气处理的生物炭,其比表面积和总孔体积显著增大。实验结果表明:生物炭对铅离子的吸附效果优于普通活性炭,且以700℃氨气处理的生物炭为最佳;随溶液pH的升高生物炭对铅离子的去除率增大,当pH为4~6时去除效果较好;在溶液pH为6、初始铅离子质量浓度为50 mg/L、吸附剂加入量为1 g/L、吸附时间为6 h的条件下,700℃氨气处理的生物炭对铅离子的去除率达99%以上;700℃氨气处理的生物炭的Langmuir吸附常数和Freundlich吸附常数远大于普通活性炭和其他工艺的生物炭;铅离子在生物炭上的吸附过程符合拟二级动力学方程。  相似文献   

12.
Glycolysis behavior of polyurethane fiber waste with diethylene glycol (DEG) was studied. The glycolysis products were separated into two phases, white waxy material and brown liquid via freezing process. The white waxy material was characterized by Flourier Transform Infrared spectrometer. It has been proved that the glycolysis process of the fiber waste is affected by the reaction temperature and time. The glycolysis kinetics was investigated by reacting the waste in a twin-screw-Micro Compounder. A second-order kinetic model for the glycolysis was adopted, and the experiment data fit it quite well. The rate constants and the activation energy of glycolysis process were calculated.  相似文献   

13.
The degradation of cellulosic materials, differing mainly in the degree of polymerization and the number of reducing end groups, was studied under the alkaline conditions similar to those existing in a cementitious repository for low- and intermediate-level radioactive waste (pH 13.3, T = 25°C). The kinetics of alkaline degradation (peeling-off reaction) were studied and the data analyzed by the model of Haas et al. [13]. The observed kinetic parameters for the propagation reaction and overall stopping reaction were compared with literature data. Although measured under different experimental conditions, literature data and data from this study show a consistent picture. Differences in the extent of degradation observed for the different cellulosic materials could be satisfactorily explained by differences in reducing end group content and, consequently, by differences in the degrees of polymerization. Besides the number of reducing end groups, the degree of amorphousness also plays an important role. The main degradation products formed under the experimental conditions used are - and -(gluco)isosaccharinic acid. This is in agreement with many other studies on alkaline degradation of cellulose. The two isomers are formed in roughly equal amounts.  相似文献   

14.
The potential for biosorption of Hg(II) ions from aqueous solutions using water hyacinth was studied. The effect of the retention period (0, 1, 3, 7, and 15 days), pH (3, 5, 7, and 9), initial concentration of Hg(II) ions (5, 10, and 15 mg/L), and organic loading rate (25, 50, and 75 percent) on biosorption were investigated. The physicochemical parameters were also analyzed at various concentrations of Hg(II) ions before and after treatment. The maximum biosorption rate was obtained at 15 days with the initial concentration of 10 mg/L at a pH of 7 and organic loading rate of 50 percent. The maximum biosorption capacity of both water hyacinth roots and shoots were 5.5 mg/L and 3.8 mg/L, respectively. The Hg(II) biosorption data were analyzed using the first‐ and second‐order kinetic models. Pseudo second‐order kinetics was considered the most appropriate model for predicting the biosorption capacity of both water hyacinth roots and shoots, and the modeled results were compared to the experimental results. Langmuir and Freundlich isotherms were used to evaluate the experimental data, and their constants were derived. Biosorption equilibrium data were best described by the Langmuir isotherm model followed by the Freundlich model. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
This paper presents a model using fuzzy synthetic evaluation to estimate the methane generation rate constant, k, for landfills. Four major parameters, precipitation, temperature, waste composition and landfill depth were used as inputs to the model. Whereas, these parameters are known to impact the methane generation, mathematical relationships between them and the methane generation rate constant required to estimate methane generation in landfills, are not known. In addition, the spatial variations of k within a landfill combined with the necessity of site-specific information to estimate its value, makes k one of the most elusive parameters in the accurate prediction of methane generation within a landfill. In this paper, a fuzzy technique was used to develop a model to predict the methane generation rate constant. The model was calibrated and verified using k values from 42 locations. Data from 10 sites were used to calibrate the model and the rest were used to verify it. The model predictions are reasonably accurate. A sensitivity analysis was also conducted to investigate the effect of uncertainty in the input parameters on the generation rate constant.  相似文献   

16.
In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.  相似文献   

17.
The influence of the co-combustion of household waste with either sewage sludge, shredder fluff, electronic and electrical waste (WEEE) or PVC on the bottom ash quality and content was investigated under controlled laboratory conditions using a pot furnace. This laboratory approach avoids the interpretation problems related to large variations in input waste composition and combustion conditions that are observed in large scale MSW incinerators. The data for metals content, transfer coefficients and leaching values are presented relative to data for a base household waste composition that did not contain any of the added special wastes. The small WEEE invited direct measurement of precious metals content in the ashes, where measurement accuracy is facilitated by using only mobile phone scrap for small WEEE. The analyses were carried out for different particle size ranges that are of relevance to the recyclability of metals and minerals in the ashes. Positive correlations were found between elements content of the input waste and the bottom ashes, and also between increased levels of Cl, Mo and Cu in the input waste and their leaching in the bottom ashes. These correlations indicate that addition of PVC, small WEEE and shredder fluff in input waste can have a negative influence on the quality of the bottom ashes. Enrichment of Au and Ag occurred in the fractions between 0.15 and 6 mm. The precious metals content represents an economically interesting intrinsic value, even when the observed peak values are properly averaged over a larger volume of ashes. Overall, it has been shown that changes in quality and content of bottom ashes may be traced back to the varied input waste composition.  相似文献   

18.
Chlorine position of chlorophenol isomers has a significant effect on the dechlorination kinetics of monochlorophenols, dichlorophenols, and trichlorophenols during Fenton oxidation. The effects have been evaluated by the rate constants of the dechlorination kinetic model developed in this study. It is found that the dechlorination rate of 3-CP is faster than that of 4-CP, which is faster than that of 2-CP. Since OH and Cl groups on the aromatic ring are ortho and para directors, the directory effect of OH and Cl groups enhances the dechlorination kinetics of 2-CP due to acceleration of the hydroxylation of 2-CP. Therefore, the dechlorination kinetics increases accordingly. For trichlorophenols (TCP), steric hindrance plays an important role during their dechlorination process. Specifically, the closer the chlorine atoms locate with each other on the aromatic ring, the more difficult the dechlorination processes will be. The dechlorination kinetics of dichlorophenols seems to be affected by both directory effect of OH and Cl groups and the effect of steric hindrance of chlorine atoms. The directory effect of OH and Cl groups on trichlorophenols decreases since the chlorine atom occupied the positions which are the most favorable for hydroxyl radical attack.  相似文献   

19.
Uncertainty analysis in LCA studies has been subject to major progress over the last years. In the context of waste management, various methods have been implemented but a systematic method for uncertainty analysis of waste-LCA studies is lacking. The objective of this paper is (1) to present the sources of uncertainty specifically inherent to waste-LCA studies, (2) to select and apply several methods for uncertainty analysis and (3) to develop a general framework for quantitative uncertainty assessment of LCA of waste management systems. The suggested method is a sequence of four steps combining the selected methods: (Step 1) a sensitivity analysis evaluating the sensitivities of the results with respect to the input uncertainties, (Step 2) an uncertainty propagation providing appropriate tools for representing uncertainties and calculating the overall uncertainty of the model results, (Step 3) an uncertainty contribution analysis quantifying the contribution of each parameter uncertainty to the final uncertainty and (Step 4) as a new approach, a combined sensitivity analysis providing a visualisation of the shift in the ranking of different options due to variations of selected key parameters. This tiered approach optimises the resources available to LCA practitioners by only propagating the most influential uncertainties.  相似文献   

20.
The neutralization behavior of municipal solid waste incineration (MSWI) bottom ash is characterized according to reaction time and reaction system. Batch and flow-through pH titrations are used to determine the acid neutralizing capacity of the MSWI bottom ash in different reaction systems. A reaction path model and a reactive transport model evaluate the detailed mechanisms and titration kinetics of the experiments. The results indicate that both the neutralization kinetics and titration kinetics of the test methods are important. They determine the relation between the time scale of the experiments and that of an actual leaching environment. Current pH titration experiments account mainly for the relatively fast neutralization reactions, so that they cannot assess the long-term neutralization processes of MSWI bottom ash. It is also found that the neutralization characteristics of MSWI bottom ash in a flow-through system are very different from those in a batch system. The movement of a pH front and the washing-out of soluble buffering components have large influences on the neutralization ability of MSWI bottom ash in a reaction system with flow-through of leachant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号