首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Chen LH  Huang CC  Lien HL 《Chemosphere》2008,73(5):692-697
Bimetallic iron-aluminum (Fe/Al) particles were synthesized and tested for their reactivity toward carbon tetrachloride using batch reactors and a flow-through column at near neutral pH. Preparation of bimetallic Fe/Al particles was conducted under acidic conditions under which iron was readily deposited onto the aluminum surface. The SEM image showed clusters of iron on the aluminum surface at the measured Fe:Al molar ratio of about 2:3. Results showed that the presence of zero-valent aluminum successfully prevented the formation of a passive layer at the iron surface and maintained the reactivity of iron. The dechlorination of carbon tetrachloride by bimetallic Fe/Al particles produced chloroform (9%), dichloromethane (17%) and methane (38%). Kinetic analysis suggests that bimetallic Fe/Al particles increased the reactivity toward carbon tetrachloride degradation by a factor of 10 compared to zero-valent iron and possessed a comparable reactivity with nano-sized Fe. The effectiveness of bimetallic Fe/Al particles was further confirmed by the continuous flow column study from which an ageing of bimetallic particles was also observed.  相似文献   

3.
Water treatment residuals (WTRs) are produced by the treatment of potable water with coagulating agents. Beneficial recycling in agriculture is hampered by the fact that WTRs contain potentially toxic contaminants (e.g. copper and aluminium) and they bind phosphorus strongly. These issues were investigated using a plant bioassay (Lactuca sativa), chemical extractions and an isotopic dilution technique. Two WTRs were applied to an acidic and a neutral pH soil at six rates. Reductions in plant growth in amended soils were due to WTR-induced P deficiency, rather than Al or Cu toxicity. The release of potentially toxic Al from WTRs was found to be mitigated by their alkaline nature and pH buffering capacity. However, acidification of WTRs was shown to release more soluble Al than soil naturally high in Al. Copper availability was relatively low in all treatments. However, the lability of WTR-Cu increased when the WTR was applied to the soil.  相似文献   

4.
The sorption of Cu(II) from an aqueous solution using ZSM-5 zeolite was investigated by batch technique under ambient conditions. Sorption was investigated as a function of pH, ionic strength, foreign ions, humic substances, and temperature. The results indicate that the sorption of Cu(II) on ZSM-5 zeolite is strongly dependent on pH. Sorption is dependent on ionic strength at low pH, but independent of ionic strength at high pH values. The presence of humic/fluvic acid (HA/FA) enhances the sorption of Cu(II) on ZSM-5 zeolite at low pH values, and reduces Cu(II) sorption at high pH values. Sorption isotherms were well simulated by the Langmuir model. Thermodynamic parameters (i.e., deltaH0, deltaS0 and deltaG0) for the sorption of Cu(II) were determined from temperature-dependent sorption isotherms at 293.15, 313.15, and 333.15 K, respectively. Results indicate that the sorption process of Cu(II) on ZSM-5 zeolite is spontaneous and endothermic.  相似文献   

5.
Influence of pH on persulfate oxidation of TCE at ambient temperatures   总被引:10,自引:0,他引:10  
Liang C  Wang ZS  Bruell CJ 《Chemosphere》2007,66(1):106-113
In situ chemical oxidation (ISCO) is a technology used for groundwater remediation. This laboratory study investigated the use of the oxidant sodium persulfate for the chemical oxidation of trichloroethylene (TCE) at near ambient temperatures (10, 20 and 30 degrees C) to determine the influence of pH (pH=4, 7 and 9) on the reaction rate (i.e., pseudo-first-order rate constants) over the range of temperatures utilized. TCE solutions (60 mg l(-1); 0.46 mM) were prepared in phosphate buffered RO water and a fixed persulfate/TCE molar ratio of 50/1 was employed in all tests. Half-lives of TCE degradation at 10, 20 and 30 degrees C (pH 7) were 115.5, 35.0 and 5.5h, respectively. Maximum TCE degradation occurred at pH 7. Lowering system pH resulted in a greater decrease in TCE degradation rates than increasing system pH. Radical scavenging tests used to identify predominant radical species suggested that the sulfate radical (SO(4)(.-)) predominates under acidic conditions and the hydroxyl radical (.OH) predominates under basic conditions. In a side by side comparison of TCE degradation in a groundwater vs. unbuffered RO water it was demonstrated that when the system pH is buffered to near neutral pH conditions due to the presence of natural occurring groundwater constituents that the TCE degradation rate is higher than in unbuffered RO water where the system pH dropped from 5.9 to 2.8. The results of this study suggest that in a field application of ISCO, pH should be monitored and adjusted to near neutral if necessary.  相似文献   

6.
BACKGROUND: Soil metal dynamics are affected by acid deposition. Little knowledge is available about the process in the lateritic soils under the monsoon forest in south China. METHODS: Samplings of Acmera acuminatissima, Cryptocarya concinna and Schima superba were grown from October, 2000 to July, 2002 in pots with a natural acid lateritic forest soil from Dinghushan. Pots were watered weekly with an acid solution (pH 3.05, 3.52, 4.00 or 4.40) or with tap water. Fe, Mn, Cu and Al were measured in soils, leachates and sapling leaves. RESULTS: Soil extractable Fe and leachate Al and Mn concentrations increased with a decreasing treatment pH. Soil reactive Al exhibited the opposite trend and decreased over time. The Ca/Al and Mg/ (Al+Mn) ratios did not decrease in the leaves of Schima superba, but decreased with a decreasing treatment pH for Cryptocaria concinna. Both ratios only decreased in the pH 3.05 treatment for Acmena CONCLUSIONS: Cu will not be toxic for plants since soil extractable Cu was not high and Fe will not be toxic either given that its root uptake was inhibited by Mn. Acid rains will lead to increased Mn and Al mobility in soil. Cryptocaria concinna will be the most sensible species to these changes (nutrient deficiency and direct Mn toxicity), while Schima superba should retain a good growth.  相似文献   

7.
Lee JY  Hozalski RM  Arnold WA 《Chemosphere》2007,66(11):2127-2135
Iron metal (Fe(0)) is a potent reductant capable of reducing a wide variety of halogenated organic compounds including disinfection byproducts (DBPs). These reduction reactions may play a role in DBP fate in iron water mains and potentially could be exploited to remove DBPs from drinking water or wastewater in a packed-bed configuration. Oxidants (i.e., dissolved oxygen (DO) and chlorine) present in the water, however, may decrease the DBP degradation rate by competing for reactive sites and rapidly aging or corroding the iron surface. Thus, batch experiments were performed to investigate the effect of DO on the degradation rates of selected DBPs by Fe(0). Experiments were performed under anaerobic conditions, in initially oxygen saturated buffer without DO control, and under controlled DO (approximately 4.0 or 8.0 mg l−1) conditions. The effect of short-term (25–105 min) iron aging in DO-containing buffer on DBP degradation rate also was investigated in separate experiments. For fresh Fe(0), the degradation rates of trichloronitromethane (TCNM) and trichloroacetonitrile (TCAN) in initially oxygen saturated buffer were similar to their respective rates under anaerobic conditions. The degradation rate of 1,1,1-trichloropropanone (1,1,1-TCP), however, decreased significantly in the presence of DO and the effect was proportional to DO concentration in the controlled DO experiments. For a DO concentration of 4 mg l−1, the degradation rate of the three DBPs was greater for longer aging times as compared to their respective rates after 25 min, suggesting the formation of a mineral phase that increased reactivity. For a DO concentration of 8 mg l−1, the effects of increasing aging time were mixed. TCNM degradation rates were stable for all aging times and comparable to that under anaerobic conditions. The TCAN and 1,1,1-TCP degradation rates, however, tended to decrease with increasing aging time. These results suggest that the reduction of highly reactive DBPs by Fe(0) will not be affected by the presence of DO but that the reaction rates will be slowed by DO for DBPs with slower degradation kinetics.  相似文献   

8.
Anaerobic decomposition of halogenated aromatic compounds   总被引:5,自引:0,他引:5  
Halogenated compounds constitute one of the largest groups of environmental pollutants, partly as a result of their widespread use as biocides, solvents and other industrial chemicals. A critical step in degradation of organohalides is the cleavage of the carbon?halogen bond. Reductive dehalogenation is generally the initial step in metabolism under methanogenic conditions, which requires a source of reducing equivalents, with the halogenated compound serving as an electron acceptor. Dehalogenation is greatly influenced by alternate electron acceptors; e.g. sulfate frequently inhibits reductive dehalogenation. On the other hand, a number of halogenated aromatic compounds can be degraded under different electron-accepting conditions and their complete oxidation to CO(2) can be coupled to processes such as denitrification, iron(III)-reduction, sulfate reduction and methanogenesis. Reductive dehalogenation was the initial step in degradation not only under methanogenic, but also under sulfate- and iron(III)-reducing conditions. Dehalogenation rates were in general slower under sulfidogenic and iron-reducing conditions, suggesting that dehalogenation was affected by the electron acceptor. The capacity for dehalogenation appears to be widely distributed in anoxic environments; however, the different substrate specificities and activities observed for the halogenated aromatic compounds suggest that distinct dehalogenating microbial populations are enriched under the different reducing conditions. Characterization of the microbial community structure using a combination of biomolecular techniques, such as cellular fatty acid profiling, and 16 S rRNA fingerprinting/sequence analysis, was used to discern the distinct populations enriched with each substrate and under each electron-accepting condition. These combined techniques will aid in identifying the organisms responsible for dehalogenation and degradation of halogenated aromatic compounds.  相似文献   

9.
Co-treatment of acid mine drainage (AMD) with municipal wastewater (MWW) using the activated sludge process is a novel treatment technology offering potential savings over alternative systems in materials, proprietary chemicals and energy inputs. The impacts of AMD on laboratory-scale activated sludge units (plug-flow and sequencing batch reactors) treating synthetic MWW were investigated. Synthetic AMD containing Al, Cu, Fe, Mn, Pb, Zn and SO4 at a range of concentrations and pH values was formulated to simulate three possible co-treatment processes, i.e., (1) adding raw AMD to the activated sludge aeration tank, (2) pre-treating AMD prior to adding to the aeration tank by mixing with digested sludge and (3) pre-treating AMD by mixing with screened MWW. Continuous AMD loading to the activated sludge reactors during co-treatment did not cause a significant decrease in chemical oxygen demand (COD), 5-day biochemical oxygen demand, or total organic carbon removal; average COD removal rates ranged from 87–93 %. Enhanced phosphate removal was observed in reactors loaded with Fe- and Al-rich AMD, with final effluent TP concentrations <2 mg/L. Removal rates for dissolved Al, Cu, Fe and Pb were 52–84 %, 47–61 %, 74–86 % and 100 %, respectively, in both systems. Manganese and Zn removal were strongly linked to acidity; removal from net-acidic AMD was <10 % for both metals, whereas removal from circum-neutral AMD averaged 93–95 % for Mn and 58–90 % for Zn. Pre-mixing with screened MWW was the best process option in terms of AMD neutralization and metal removal. However, significant MWW alkalinity was consumed, suggesting an alkali supplement may be necessary.  相似文献   

10.
以蒙脱土为载体制备负载型Fe/Al复合氧化物(FeAlOx/MMT)用于催化Fenton反应降解高浓度苯酚废水。实验结果表明,活性相FeAlOx中Fe/Al摩尔比为0.22时制备所得催化剂对Fenton反应具有最佳活性,且Fe/Al复合氧化物并未嵌入蒙脱土层间。在低温和高pH条件下催化体系存在诱导期,诱导期内FeAlOx/MMT缓释出Fe离子并进而由Fe离子催化溶液中的Fenton反应。通过对非均相催化降解苯酚废水的动力学研究发现,H2O2初始浓度、溶液的pH和反应温度对COD降解效率具有显著影响。调节降解过程中的温度序列和氧化剂引入程序能够缓解高温和高双氧水浓度双重因素耦合导致的HO.自消耗。在优化的降解条件下使用理论用量的H2O2可使得1 g/L的苯酚废水中苯酚降解率达到100%,而COD的降解率则达到97%。  相似文献   

11.
A silent electric discharge was applied to decompose halogenated methanes including CCl4, CHCl3, CFCl3, CF2Cl2 and CF3Cl, in argon-containing gas mixtures. The decompositions of the target compounds were studied in static reactors at a fixed electric field and room temperature. The reaction products were analyzed by FT-IR spectroscopy, gas chromatography and UV spectrophotometry. The results demonstrated, that the radical-type decomposition of chlorofluoromethanes led to products formed by realignment of the halogen atoms. The decomposition of CCl4 was faster than that of the cholorofluoromethanes, and produced perchloroethane and chlorine. CHCl3 exhibited the highest decomposition rate and produced a large variety of products.  相似文献   

12.
Abstract

This study was conducted to evaluate the effects of various rates of Copper (Cu) amendments (as CuSO4.5H2O at either 0, 25, 50, 100, 200, or 400 mg Cu kg‐1) to soils with different pH values on the distribution of various chemical forms of Zinc (Zn), Iron (Fe), Manganese (Mn), and Aluminum (Al) in soils and their uptake by Swingle citrumelo citrus rootstock seedlings. The soils included Myakka fine sand (pH 5.70), Candler fine sand (pH 6.45), and Oldsmar fine sand (pH 8.16). The chemical forms of metals evaluated in this study included exchangeable, sorbed, organically bound, precipitated, and residual forms. An increase in Cu rates, lowered the pH in the Myakka and Candler fine sands, but not in the Oldsmar fine sand. This, in turn, resulted in an increase in the proportion of the readily soluble forms (the exchangeable + sorbed forms) of Zn and Mn, and decreased that of Fe in the Myakka and Candler fine sands. In those two soils, the organically bound forms of Zn, Fe, and Mn decreased with an increase in Cu rates. However, the proportion of readily soluble forms was not significantly influenced by increasing Cu rates in the Oldsmar fine sand. The total content of Zn, Fe, and Mn in citrus roots and that of Zn and Fe in the leaves, significantly decreased with an increase in Cu rates in the Myakka and Candler fine sands. In the Oldsmar fine sand, Cu rates through the entire range had no significant effects on the total contents of Zn, Fe, and Mn in the leaves or in the roots of Swingle citrumelo rootstock seedlings.  相似文献   

13.
Bastos PM  Eriksson J  Green N  Bergman A 《Chemosphere》2008,70(7):1196-1202
The term persistence has been used to confusion since it is used as a conceptual parameter without a uniform definition. Work is therefore being done in order to unite ideas and describe persistence based on the chemical reactivity and chemico-physical properties of compounds via investigation of the main degradation pathways in the environment; photolysis, hydrolysis-substitution-elimination (hse), oxidation, reduction and radical reactions. The present work is focused on developing a method to determine oxidative degradation rates of chemicals and thereby measurement of their susceptibility to undergo oxidation reactions. The method based on potassium permanganate works well for water soluble compounds and is easy, robust, inexpensive and reproducible. By using the method and varying the analysed substances, the degradation rates for brominated phenols, two chlorinated phenols and high volume production compounds such as tetrabromobisphenol A (TBBPA), tetrachlorobisphenol A (TCBPA) and bisphenol A (BPA) have been determined at pH 7.6+/-0.2. The reaction rates of the two halogenated BPA's are particularly fast, giving half-lives in seconds. The other test compounds have slower reaction rates but easily measured under the reaction conditions applied. The reactions are temperature dependent. There is evidence that pK(a) and the substitution pattern of the halogens affects the rate of the reactions. The method is robust and applicable for reaction rate constant measurements of present and potential future environmental contaminants.  相似文献   

14.
铝铁电极联用电絮凝法处理Cu-EDTA络合废水   总被引:1,自引:0,他引:1  
采用电絮凝法处理Cu-EDTA模拟废水,研究电极组合方式、初始pH值和氯化钠浓度3个因素对化学需氧量(COD)和Cu去除效果的影响。实验研究发现,当电极组合方式为2个铝阳极和2个铁阴极,起始pH值为3,氯化钠浓度为0.5 g/L,换极周期为40 min,反应时间为80 min时,COD去除率达到78.7%,Cu离子去除率达到99.9%。通过实验研究确定EDTA的去除机制主要是:酸性条件下的次氯酸氧化作用,碱性条件下的氢氧化物絮凝沉淀作用及单核态铝/铁与多核态铝/铁电荷中和作用,Cu的去除机制主要是氢氧化物的絮凝沉淀作用和铁电极的电沉积作用。  相似文献   

15.
Measurements were made of the contents of Al, Mn, Fe, Cu, Zn, Cd and Pb in Scapania undulata in three streams (D2, D5, D11) in the English Lake District. The stream waters had average pH values of 5.35 (D2), 5.81 (D5) and 7.26 (D11), the main differences in other major chemical components being in Mg, Al, Ca and alkalinity. There was generally more metal accumulation in the older parts of the plants, but this was not significant in all cases. Extents of accumulation varied with stream pH and dissolved metal concentration. For Al, accumulation was greatest in streams D2 and D5. Mn accumulated most in D5 and Fe was without preference. Cu, Zn and Cd accumulated mostly in the plants in stream D11 and Pb accumulated more in D5 and D11. In terms of enrichment factors (amount of metal in the plants divided by stream water concentration) the sequence was Zn < Cd < Cu < Mn < Pb < Al < Fe. Laboratory experiments supported the findings of the field data, providing evidence that uptake increases with pH at constant total metal concentration. The results are interpreted qualitatively in terms of the chemical speciation of the metals in the stream water and competition between metal ions and protons at the plant-water interface. It is suggested that Al, Cu, Zn, Cd and Pb behave according to chemical complexation, whereas redox processes and/or colloidal interactions may be significant for Mn and Fe.  相似文献   

16.
The interaction of Cu with dissolved organic matter (DOM, extracted from an organic forest floor) was investigated and the resulting data was evaluated in terms of their uncertainty. The speciation of Cu over ‘free’ Cu (as analysed by diffusive gradients in thin films (DGT)), dissolved Cu–DOM complexes and precipitated Cu–DOM was determined as a function of pH (3.5, 4.0 and 4.5) and Cu/C ratio. The dissolved organically bound fraction was highest at pH 4.5, but this fraction decreased with increasing Cu/C ratio, which was observed for all pH levels. In the range of Cu/C=7×10−5–2.3×10−2 (mol/mol) the precipitated fraction was very small. The speciation of both Al and Fe was not affected by increasing Cu concentrations. From a continuous distribution model using the Scatchard approach, we calculated the optimal fit and corresponding upper and lower 95% uncertainty bounds of the overall stability constants (Ko) with the shuffled complex evolution Metropolis (SCEM) algorithm. Although the optimal equation fitted the data very well, the uncertainty of the, according to literature, most reliable approach to establish stability constants, was still large. Accordingly, the usually reported intrinsic stability constants exhibited large uncertainty ranging from logKi=6.0–7.1 (optimal 6.7) for pH 3.5, logKi=6.5–7.1 (optimal 6.8) for pH 4.0, and logKi=6.4–7.2 (optimal 6.8) for pH 4.5 and showed only little effect of pH.  相似文献   

17.
Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1+/-0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them extremely insoluble even in 0.2 M HCl solution. The formation of solid solution of Ni with Al oxide was also possible, making it far less extractable than Cd, Zn, Cu, or Pb with the acid concentrations used.  相似文献   

18.
Jiang JQ  Zeng Z 《Chemosphere》2003,53(1):53-62
This paper builds on the preceding researches to study the effects of the type of clays (montmorillonites K10, KSF) and modifying conditions on the structure and adsorption behavior of resulting clay adsorbents. The raw clays were modified by polymeric Al/Fe species, hexadecyl-trimethylammonium (HDTMA) surfactant and a complex of polymeric Al/Fe-HDTMA. X-ray diffraction spectra was applied to analyze the structure of the raw and modified clays. After modification, the basal spacing of the clays varied, depending on the types of raw clay and modification conditions. Copper and phenol were selected as adsorbates for evaluating the adsorption performance of various clays, which was affected significantly by the types of raw clay and modification conditions. In general the inorganic contaminant (e.g., Cu) tend to be adsorbed by the polymeric Al/Fe modified clay and the organic impurities (e.g., phenol) will be preferably captured by the surfactant modified clay; both due to the specific surface properties resulting from introducing the modifiers. The complex modified clays possessed the ability of adsorbing both inorganic and organic contaminants. In addition, the d 0 0 1 spacing of modified KSF was greater than that of K10; the adsorption performance with modified KSF was thus greater than that with the modified K10. Finally, the ratio of modifiers to the clay (metal:surfactant:clay) has been observed to affect the adsorption performance; the optimal conditions have been defined.  相似文献   

19.
This study examined the accumulation of aluminium (Al), mostly as the insoluble (Al(OH)(3)) species, by the freshwater crustacean Asellus aquaticus at neutral pH. Animals were exposed to a range of Al concentrations (5-356 microg l(-1)) in three experiments. The first two were of 30 and 50 days duration, respectively, followed by transfer of the A. aquaticus to water containing no Al for 20 days. The third used live and dead animals in order to investigate the contribution made by surface adsorption of Al to the total accumulated. Significant accumulation of Al in the whole tissues occurred by day 10 in all animals in the 30- and 50- day experiment. Peak concentrations of Al were measured in animals between days 10 and 20 with high concentration factors ranging from 1.4 x 10(4) to 5.5 x 10(3). By day 30, accumulated Al had fallen but was still significantly greater than the control in the 50- day exposure experiment. This 30- day increase followed by decreased accumulation of Al was repeated over the remaining exposure period (i.e. 30-50 days) although rates of uptake and loss and peak tissue levels of Al were higher. Proportionality between environmental (water) and tissue concentrations of Al occurred at day 20 but not at day 45. Significantly more Al was accumulated by dead animals than live animals at all Al exposure concentrations. These results suggest that Al is available to the crustacean at neutral pH and that the cuticle may provide an important site of uptake.  相似文献   

20.
The Cedar and Ortega rivers subbasin is a complex environment where both natural and anthropogenic processes influence the characteristics and distributions of sediments and contaminants, which in turn is of importance for maintenance, dredging and pollution control. This study investigated the characteristics and spatial distribution of heavy metals, including lead (Pb), copper (Cu), zinc (Zn) and cadmium (Cd), from sediments in the subbasin using field measurements and three-dimensional kriging estimates. Sediment samples collected from three sampling depth intervals (i.e., 0-0.10, 0.11-0.56 and 0.57-1.88 m) in 58 locations showed that concentrations of Pb ranged from 4.47 to 420.00 mg/kg dry weight, Cu from 2.30 to 107.00 mg/kg dry weight, Zn from 9.75 to 2,050.00 mg/kg dry weight and Cd from 0.07 to 3.83 mg/kg dry weight. Kriging estimates showed that Pb, Cu and Cd concentrations decreased significantly from the sediment depth of 0.10 to 1.5 m, whereas Zn concentrations were still enriched at 1.5 m. It further revealed that the Cedar River area was a potential source area since it was more contaminated than the rest of the subbasin. Comparison of aluminum (Al)-normalized metal concentrations indicated that most of the metals within the top two intervals (0-0.56 m) had concentrations exceeding the background levels by factors of 2-10. A three-dimensional view of the metal contamination plumes showed that all of the heavy metals, with concentrations exceeding the threshold effect level (TEL) that could pose a threat to the health of aquatic organisms, were primarily located above the sediment depth of 1.5 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号