首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Periphyton developments in water distribution canals induce major disturbances for system management, such as clogging problems when fixed algae are detached. Periphyton models can be used to simulate and improve canal management. The purpose of this paper is to review the periphyton models which integrate a hydrodynamic effect, and to discuss their relevance for application in open-channels. Afterwards, a new model of periphyton detachment that integrates the hydrodynamic factor is proposed. An experiment in semi-real conditions is performed to compare periphyton development under four different hydrodynamic regimes. The proposed model is compared on experimental results with two existing models. The new model reproduces well the periphyton dynamics in the four canals simultaneously.  相似文献   

2.
The water age in a tidal river in Florida, Little Manatee River, has been investigated in this study by the application of a three-dimensional hydrodynamic model. In response to a pulse dye release in the upper end of the river boundary, the hydrodynamic model determines the water age for a given location by recording the time for the dye to reach the given river location. The hydrodynamic model uses horizontal curvilinear orthogonal grids to represent the complex river system that includes several bayous and tributaries. The model has was calibrated and verified in previous study by using two continuous data sets for a 6 month period. Satisfactory model verifications indicate that the hydrodynamic model is capable of quantifying the mixing and transport process for calculating the water age in the tidal river. For 17 freshwater inflow scenarios in the Little Manatee River, the hydrodynamic model was applied to simulate water ages along the main channel of the river at 2-km interval. Flow rates in the 17 scenarios varying from 0.26 to 76.56 m3/s cover the range of the observed flows in the Little Manatee River. Water ages from model predictions range from the minimum 1.2 days under the maximum 76.56 m3/s inflow condition to the 50 days under the minimum 0.26 m3/s inflow condition. Empirical regression equations at three selected stations, with the correlation coefficient R2 above 0.96, were derived from numerical model simulations to correlate water ages to freshwater inflows. The empirical water-age equation derived from hydrodynamic model simulations can be used to provide quick and low-cost estimations of water ages in response to various inflow scenarios for studying physical–chemical and biological processes in the river.  相似文献   

3.
The seacoasts protection does not stand standard solutions. Every part of a shore needs to be creatively approached and its hydrodynamic, lithodynamic, geological, geomorphological and other peculiarities must be thoroughly studied for each particular situation. It takes a complex scientific approach considering not only local features, but also the reaction of the whole lithodynamic system in limits of which the coast protective activity is planned with consideration of calculated hydrodynamic parameters (waves, sea level, etc.).  相似文献   

4.
水动力条件对藻类影响的研究进展   总被引:8,自引:0,他引:8  
吴晓辉  李其军 《生态环境》2010,19(7):1732-1738
水动力过程是影响水体富营养化状态和水华爆发的重要因素,水动力因素对藻类影响的研究对于富营养化水体藻类控制具有重要意义。归纳分析近年来关于流速、流态对藻类生长和种类变化的研究报道;就水动力条件对藻类的影响及其作用机理等详细地进行了文献综述。水动力条件对藻类生长的影响分为流速和流态两个方面,不论是单一藻种还是混合藻类,低流速、小扰动有利于藻类的生长和聚集,流速增大则导致Chla浓度先递增后递减,不同藻类的临界流速并不相同;藻类生长随着湍流程度的增加而逐渐受到抑制,抑制作用与水流流态(层流、过渡流、湍流)无明显相关关系,水体流态的变化造成水流剪应力的变化,藻类种类的差异导致其对水流剪应力的响应变化。水动力条件变化引起的藻类种群结构变化,主要表现为水体混合加剧导致优势种群的转换。水动力条件对藻类影响的作用原理主要是引起了光强的改变、细胞长度的变化、营养盐运送及捕食行为变化等。综观当前的研究成果,水动力能否真正阻止藻类细胞的生长或聚集,影响藻类生长或种类变化的扰动的最低水平以及水动力对藻类影响的作用机理是这一领域未来研究的重点所在。  相似文献   

5.
An integrated approach using hydrodynamic and transport numerical models, lepidochronology and stable isotope analysis was used to investigate how local hydrodynamic conditions influence the primary production and fate of the seagrass Posidonia oceanica in a Mediterranean semi-enclosed marine system (Stagnone di Marsala). The water mass exchange aptitude of different sectors of the basin was analysed, and data collected were used to select two sectors (colonized by Posidonia oceanica showing the lowest and highest water exchange values) for biological analyses. According to the mean dispersal coefficient differences simulated by the hydrodynamic model, growth rate and primary production of P. oceanica differed between sectors, with average values lower in the central sector where water exchange is lower than in the southern sector. Although P. oceanica coverage and primary production were higher in the southern sector, carbon and nitrogen stable isotope analysis suggests that the transfer of seagrass organic matter to higher trophic levels of the food web was higher in the central sector. The possibility of a link between hydrodynamism, production and fate of organic matter is proposed to explain the observed patterns.  相似文献   

6.
Han  Dongrui  Xiong  Jie  Xie  Xiaoyun  Lin  Yingtien 《Environmental Fluid Mechanics》2021,21(5):1165-1187
Environmental Fluid Mechanics - The propagation and hydrodynamic processes of lock-exchange gravity current through vegetation regions were investigated experimentally. Experimental results show...  相似文献   

7.
An integrated approach using hydrodynamic and transport numerical models, lepidochronology and stable isotope analysis was used to investigate how local hydrodynamic conditions influence the primary production and fate of the seagrass Posidonia oceanica in a Mediterranean semi-enclosed marine system (Stagnone di Marsala). The water mass exchange aptitude of different sectors of the basin was analysed, and data collected were used to select two sectors (colonized by Posidonia oceanica showing the lowest and highest water exchange values) for biological analyses. According to the mean dispersal coefficient differences simulated by the hydrodynamic model, growth rate and primary production of P. oceanica differed between sectors, with average values lower in the central sector where water exchange is lower than in the southern sector. Although P. oceanica coverage and primary production were higher in the southern sector, carbon and nitrogen stable isotope analysis suggests that the transfer of seagrass organic matter to higher trophic levels of the food web was higher in the central sector. The possibility of a link between hydrodynamism, production and fate of organic matter is proposed to explain the observed patterns.  相似文献   

8.
Many nearshore restoration projects are currently underway at coastal locations where human influence and development have disrupted natural habitat and coastal ecological systems. The objectives of these projects in general are to restore the lost estuarine functions to the tidal marshland. Often these projects are conducted with little understanding of the potential effects of other nearby projects within the ecosystem, and similarly, it is easy to neglect the effect of the local project on the larger estuarine scale. In this paper, a modeling study is presented to evaluate the hydrodynamic responses of multiple restoration projects and their cumulative effect in the Snohomish River estuary in Washington, USA. The concept of absolute mean tidal transport is introduced and used to measure the cumulative effect of the proposed restoration projects on the estuarine hydrodynamics. The results show that the hydrodynamic responses due to multiple restoration projects are additive in the estuary, and the effect is nonlinear. The hydrodynamic response under restoration conditions depends on the size of the restoration area and the geometric configuration of the existing river channels. Within a complex braided estuary such as the Snohomish, the influence of a specific restoration project is not only experienced locally, but also found to significantly affect tidal transport in all distributary branches within the system.  相似文献   

9.
Environmental Fluid Mechanics - Species specific hydrodynamic characterization is essential for assessing the suitability of various types of mangroves in coastal protection as the dissipation of...  相似文献   

10.
In coastal habitats, wave exposure influences several aspects of the life history of marine organisms. Here, we assess how hydrodynamic conditions can generate variation in density, size structure and microhabitat usage of Paracentrotus lividus and whether these effects are consistent between regions that are markedly different for oceanic climate, such as the coasts of SW Portugal and NW Italy. The abundance of P. lividus was ~4 times higher in SW Portugal than in NW Italy, but within each region, there was no effect of wave exposure. In SW Portugal, higher urchin abundances were found at shallower depths, while no effect of depth on urchin abundance emerged in NW Italy. Most of the variation in urchin abundance occurred at small spatial scales (metres), and our results suggest that habitat complexity, that is, the presence of cracks and crevices, is an important determinant of patterns of distribution of this species. The population in NW Italy was characterized by a unimodal size distribution, with a higher proportion of medium-sized individuals. In contrast, in SW Portugal, smaller individuals represented a large proportion of the populations. Size structure varied between exposed and sheltered habitats in SW Portugal, suggesting that the proportion of individuals from different size cohorts may vary along wave-exposure gradients as a result of direct or indirect effects of hydrodynamic forces. In SW Portugal, most urchins occurred in burrows, while in NW Italy, urchins were mainly observed in crevices. These results suggest that creating/occupying burrows might be an adaptive behaviour that allows sea urchins to better withstand stressful hydrodynamic conditions and, therefore, are more common on exposed Atlantic coasts. Overall, our study suggests that the effects of hydrodynamic forces on sea urchin populations are context dependent and vary according to background oceanic climate.  相似文献   

11.
Environmental Fluid Mechanics - The accurate simulation of wetting–drying processes in floodplains and coastal zones is a challenge for hydrodynamic modelling, especially for long time...  相似文献   

12.
Yang  Wanli  Li  Ao  Li  Qiao  Wen  Zhibin  Zhao  Wanli 《Environmental Fluid Mechanics》2019,19(1):55-79
Environmental Fluid Mechanics - Froude number similarity has been used in all the physical experiments of earthquake induced hydrodynamic forces acting on deep water bridge piers without...  相似文献   

13.
It has been observed in Venice Lagoon that salt-marshes have appeared and developed as a consequence of the presence of artificial or biological confinements, maintaining separation domains in the hydrodynamic wave and tidal flow field.  相似文献   

14.
耿楠  王沛芳  王超  祁凝  王智源 《生态环境》2014,(7):1193-1198
在浅水湖泊中,沉积物易受到水流的扰动释放出原本沉降于其中的氮营养盐。沉水植物一方面能够减少水动力的作用,一方面又能够吸收沉积物中的和已经释放到上覆水中的氮营养盐供其生长同时改善水质。因此,研究沉水植物对沉积物中氮营养盐释放的影响具有很重要的实际意义。借助自主开发的生态水槽,研究苦草(Vallisneria spiraslis L.)在动、静水条件下对沉积物氮的释放的影响。实验装置包括四组水槽,两组动水槽中的一组只铺沉积物,另一组在沉积物上种植苦草,两组静水槽也如此设置。在40 d的实验周期内,我们在实验始末采集沉积物样品,在每一个采样时间点(0、1、3、6、12、20、30、40 d)采集水样,并测定沉积物中总氮含量,原水样中的总氮含量以及过滤水样中的总氮、氨氮、硝氮和亚硝氮的含量。研究结果表明:没有苦草的实验组0~1 cm沉积物层总氮下降幅度较大,有苦草的实验组表面0~1 cm沉积物层氮含量较高。苦草从根系周围沉积物中吸收氮,1~4 cm沉积物层的吸收量多于4~8 cm沉积物层。各水槽上覆水中总氮含量在第1天就有较大的增加,从0.09 mg·L^-1分别升到0.60、0.50、0.379、0.36 mg·L^-1在水动力影响下的增加更显著,后缓慢上升。动水槽中进入到上覆水的氮中80%以上是以溶解态氮形式存在,静水槽中这个比例高达90%以上。苦草对溶解态和颗粒态氮的去除率最高可达27.6%和84.3%。3种氮形态中硝态氮的含量比重较大,在动水条件下,苦草对氨氮,硝氮和亚硝氮的去除率最高可达30.0%、25.0%和60.0%。但苦草对水中氮形态的比例的影响并不明显。以上结果说明水动力条件明显促进沉积物中氮的释放,沉水植物苦草通过保护表层沉积物,吸收下层沉积物中氮,去除进入上覆水中的氮,特别是颗粒态氮和溶解态中的亚硝态  相似文献   

15.
Calanoid copepods typically exhibit escape reactions to hydrodynamic stimuli such as those generated by the approach of a predator. During the summers of 2000, 2001 and 2004, two small calanoid species, Temora turbinata Dana, 1849 and Paracalanus parvus Claus, 1863 were exposed to a visual predatory fish, the blenny Acanthemblemaria spinosa Metzelaar, 1919, and their predator–prey interactions were recorded using both high-speed and standard videographic techniques. Copepod escape reaction components, including swimming pattern, reactive distance, turning rate, and jump kinetics, were quantified from individual predation events using motion analysis techniques. Among the observed escape reaction components, differences were noted between the species’ swimming patterns prior to attack and their response latencies. Temora turbinata was a continuous cruiser and P. parvus exhibited a hop-and-sink swimming pattern. During periods of sinking, P. parvus stopped beating its appendages, which presumably reduced any self-generated hydrodynamic signals and increased perceptual abilities to detect an approaching predator. Response latency was determined for each copepod species using a hydrodynamic stimulus produced by a 1 ms acoustic signal. Response latencies of T. turbinata were significantly longer than those of P. parvus. Despite some apparent perceptual advantages of P. parvus, the blenny successfully captured both species by modifying its attack behavior for the targeted prey.  相似文献   

16.
A hydrodynamic model explaining the mechanism of contact of marine larvae in vertical flows is presented. Two hydrodynamic factors—flow vorticity and larval self-propulsion—are the key components in the mathematical model. It is shown that flow vorticity causes a larva to rotate and change the direction of self-thrust, thus leading to its migration across the mean flow. The latter motion is of an oscillatory nature. Contact will be enabled only for sufficiently large amplitudes of oscillations. Simple expressions for the probability of initial contact are obtained for two-dimensional Couette and Poiseuille flows. The three-dimensional motion of a larva in a tube is studied using the Monte-Carlo simulations. It is shown that contact probability depends mainly on the ratio of the characteristic flow velocity and the larva’s swimming speed. The theoretical results compare favorably with available experimental data. Possible applications of the method and results presented here to the classical problem of larval attachment to bodies of general geometry are briefly discussed in the concluding section.  相似文献   

17.
The Wairoa River, a barrier enclosed estuary situated in Hawke’s Bay, New Zealand was modelled using a one-dimensional hydrodynamic model. Water level data obtained during a flood and a bathymetric survey were available but the entrance cross-section had not been surveyed. This paper describes the calibration of the model to jointly optimise the selection of the Manning coefficient and the depth of the estuary entrance.  相似文献   

18.
Schooling mackerel and herring choose neighbours of similar size   总被引:1,自引:0,他引:1  
Fish schooling in a submerged sea-cage swam next to neighbours of similar size. Between 57 and 74 fish were used. Extensive three-dimensional data showed the neighbour size effect for two different species, herring and mackerel, during both day and night. These experiments, covering sizes which coexist in the wild, are the first demonstration of the neighbour size choice in fish schools predicted by theories of hydrodynamic advantage.  相似文献   

19.
There are numerous small populated islands near western Sumatra in Indonesia. The Weh, Banyak, Mentawai, and Enggano islands are home to many Indonesians. These small islands have been found to be effective at reducing tsunami wave energy on several occasions. At the same time, they are situated around Sumatras active subduction zone and are often among the areas most affected by tsunamisas in the case of Pulo Raya Island, in the western Aceh Jaya district about 800 m from Sumatra. Pulo Raya was devastated by the 2004 Indian Ocean tsunami. This study investigates the hydrodynamic processes of reflected tsunami waves and their impact on Pulo Raya, using a Cornell Multi-grid COupled Tsunami (COMCOT) model to simulate the tsunami wave runup and subsequent hydrodynamic processes. The simulation confirms eyewitness accounts that it was not the initial runup, but the reflected waves that devastated the worst-hit areas of the island. As a result, we can recommend that governments and communities on small islands need to anticipate the impacts of reflected waves following a tsunami, especially at lee side of of the island that was perceived to be a safer place by the island community before the 2004 Indian Ocean tsunami.  相似文献   

20.
The hydrodynamic circulation is analyzed in the coastal lagoon of Stagnone di Marsala, a natural reserve located in the north-western part of Sicily, using both experimental measurements and numerical simulations. Field measurements of velocities and water levels, carried out using an ultrasound sensor (3D), are used to validate the numerical model. A 3D finite-volume model is used to solve the Reynolds-averaged momentum and mass balance differential equations on a curvilinear structured grid, employing the k–e{\varepsilon} turbulence model for the Reynolds stresses. The numerical analysis allows to identify the relative contribution of the forces affecting the hydrodynamic circulation inside the lagoon. In the simulations only wind and tide forces are considered, neglecting the effects of water density changes. Two different conditions are considered. In the first both the wind stress over the free-surface and the tidal motion are imposed. In the second the wind action is neglected, to separately analyze the tide-induced circulation. The comparison between the two test cases highlights the fundamental role of the wind on the hydrodynamics of the Stagnone lagoon, producing a strong vertical recirculation pattern that is not observed when the flow is driven by tides only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号