首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fortin D 《Ecology》2006,87(7):1861-1866
The distance that mammalian herbivores can travel without interrupting food processing corresponds to a distance threshold (d*) in plant spacing where change occurs in the mechanisms regulating the functional response. The instantaneous rate of food consumption is controlled by food encounter rate when plant spacing exceeds d*. Below this threshold, food processing in the mouth controls instantaneous intake rate. The distance threshold provides a mechanistic definition of the scale of heterogeneity of the food resource. Recent work indicates that d* should scale positively with the body mass of mammalian herbivores. Here I evaluated the empirical evidence for this positive scaling by investigating (1) herbivores consuming only alfalfa (Medicago sativa), (2) grazers, and (3) herbivores consuming any kind of vegetation. Overall, I found greater evidence for a negative than for a positive scaling of d*. Out of the three groups, only herbivores consuming alfalfa could yield a positive covariation between d* and body mass. However, even this positive scaling became negative when herbivores consumed bites of alfalfa that were only a fraction of their maximum size. Finally, d* also scaled negatively among herbivores foraging in similar food patches. Overall, differences in foraging decisions among mammalian herbivores seem more likely to have been shaped by a negative than a positive scaling of d*.  相似文献   

2.
Abstract: The developing field of community genetics has the potential to broaden the contribution of genetics to conservation biology by demonstrating that genetic variation within foundation plant species can act to structure associated communities of microorganisms, invertebrates, and vertebrates. We assessed the biodiversity consequences of natural patterns of intraspecific genetic variation within the widely distributed Australian forest tree, Eucalyptus globulus. We assessed genetic variation among geographic races of E. globulus (i.e., provenances, seed zones) in the characteristics of tree‐trunk bark in a 17‐year‐old common garden and the associated response of a dependent macroarthropod community. In total, 180 macroarthropod taxa were identified following a collection from 100 trees of five races. We found substantial genetically based variation within E. globulus in the quantity and type of decorticating bark. In the community of organisms associated with this bark, significant variation existed among trees of different races in composition, and there was a two‐fold difference in species richness (7–14 species) and abundance (22–55 individuals) among races. This community variation was tightly linked with genetically based variation in bark, with 60% of variation in community composition driven by bark characteristics. No detectable correlation was found, however, with neutral molecular markers. These community‐level effects of tree genetics are expected to extend to higher trophic levels because of the extensive use of tree trunks as foraging zones by birds and marsupials. Our results demonstrate the potential biodiversity benefits that may be gained through conservation of intraspecific genetic variation within broadly distributed foundation species. The opportunities for enhancing biodiversity values of forestry and restoration plantings are also highlighted because such planted forests are increasingly becoming the dominant forest type in many areas of the world.  相似文献   

3.
Most woody plants contain a diverse array of plant secondary metabolites (PSMs) that deter vertebrate herbivores. However, mammalian folivores have evolved a complex of physiological and behavioural strategies to counter these compounds, leading to the development of an “evolutionary arms race”. Marsupial folivores are ideal models to investigate the role of PSMs in the interaction between the external foraging environment and the digestive physiology of mammalian herbivores, as we have a very strong understanding of the diversity and modes of action of PSMs in Eucalyptus, as well as the mechanisms by which animals overcome the effects of these compounds. Studies of marsupial folivores have benefited from the facts that: these herbivores subsist on relatively poor quality diets; they include feeding types from specialist species such as the koala, to generalists; and life history factors such as maternal investment in reproduction can be measured more easily than in eutherians. Here, we describe patterns of spatial variation in the types and distributions of plant secondary metabolites in Australian forests and discuss how this variation influences foraging behaviour, habitat selection and life history strategies in arboreal, folivorous marsupials. We also provide a summary of our understanding of the mechanisms by which marsupials detect and regulate their intake of toxic compounds. While our examples are drawn largely from studies of the interaction between marsupials and Eucalyptus, this knowledge is applicable to advancing our understanding of interactions in plant–mammal systems more broadly. We also identify and discuss key areas that should be the focus of future research.  相似文献   

4.
Andrew RL  Peakall R  Wallis IR  Foley WJ 《Ecology》2007,88(3):716-728
Exploring the spatial distribution of variation in plant secondary metabolites is critical for understanding the evolutionary ecology of biochemical diversity in wild organisms. In the present study, concentrations of foliar sideroxylonal, an important and highly heritable defense chemical of Eucalyptus melliodora, displayed strong, fine-scale spatial autocorrelation. The spatial patterns observed could promote associational effects on herbivore foraging decisions, which may influence the selection pressures exerted on sideroxylonal content. Multiple chemical traits have roles in certain eucalypt-herbivore interactions, and the spatial characteristics of the herbivore foraging environment are therefore determined by these different factors. We used a model of E. melliodora intake by common brushtail possums (Trichosurus vulpecula), based on the combined effects of two chemical traits, to explore this idea and found that the spatial patterns were different to those of sideroxylonal alone. Spatial genetic autocorrelation, examined using microsatellites, was strong and occurred at a fine scale, implying that restricted gene flow might allow genetic patches to respond to selection relatively independently. Local two-dimensional genetic autocorrelation, explored using a new heuristic method, was highly congruent with the pattern of local phenotypic variation observed for sideroxylonal, suggesting that the genetic variance underlying the sideroxylonal variation is similarly structured. Our results suggest that the spatial distribution of genetic and phenotypic variation could influence both the selective pressure imposed by herbivores on eucalypt defenses and the potential of populations to respond to natural selection. Spatial context should be considered in future studies of plant-herbivore interactions.  相似文献   

5.
We measured spatial and temporal patterns of seed dispersal and seedling recruitment for 58 species in a grassland community to test whether seed dispersal could predict patterns of invasion after disturbance. For the 12 most abundant grasses, recruitment of native species was dependent on the propagule supply of both native and exotic species. Variability in seed rain on small spatial (1-10 m) and temporal (within season) scales led to qualitative differences in the outcome of disturbance colonization such that native species dominated disturbances when exotic seed supply was low but failed to establish when exotic seed supply was high. Local dispersal and spatial heterogeneity in species composition promoted coexistence of native and exotic species by creating refuges from high exotic seed supply within native dominated patches. Despite this, copious exotic seed production strongly limited recruitment of native species in exotic dominated patches. Most grasslands in California are presently dominated by exotic species, suggesting that competition at the seedling stage is a major barrier to native species restoration.  相似文献   

6.
The effect of heterogeneous environments upon the dynamics of invasion and the eradication or control of invasive species is poorly understood, although it is a major challenge for biodiversity conservation. Here, we first investigate how the probability and time for invasion are affected by spatial heterogeneity. Then, we study the effect of control program strategies (e.g. species specificity, spatial scale of action, detection and eradication efficiency) on the success and time of eradication. We find that heterogeneity increases both the invasion probability and the time to invasion. Heterogeneity also reduces the probability of eradication but does not change the time taken for successful eradication. We confirm that early detection of invasive species reduces the time until eradication, but we also demonstrate that this is true only if the local control action is sufficiently efficient. The criterion of removal efficiency is even more important for an eradication program than simply ensuring control effort when the invasive species is not abundant.  相似文献   

7.
Understanding the rules and factors that drive the foraging behavior of large herbivores is important to describe their interaction with the landscape at various spatial scales. Some unresolved questions refer to landscape-behavioral interactions that result in oriented or random search in seasonally changing landscapes. Remotely sensed position data indicate that herbivores select local patches of heterogeneous landscapes depending on a complex host of dynamically varying animal and environmental conditions. Since foraging paths consist in successions of relatively short steps, increasing the frequency at which position information is acquired would contribute to entangle the mechanisms resulting in herbivores’ foraging paths. We addressed the question whether herbivores would obtain information at a patch scale that would modify their distribution at a landscape scale based on directed movement or navigation ability. We considered a set of 100,000 high-frequency (1 min intervals) position data of several free-ranging sheep (Ovis aries) at a seasonal-varying range (Patagonian Monte, Argentina) and observed their movements at landscape and at single vegetation patch scales. At a landscape scale, we inspected the spatial co-variation of seasonally varying forage offer and ewes’ movement speeds. At a patch scale, we developed a phase-state (P-S) model of movement cycles based on the occurrence of behavioral phases along foraging paths, and fitted it to the observed daily time series of ewes’ movement speeds. Ewes were preferentially distributed in areas with high forage offer during periods of low forage availability and the reverse occurred during the season of high forage availability. Parameters of the model of activity cycles amenable to control by ewes (duration of speed phases, time elapsed between speed cycles) did not covariate with forage offer, but varied significantly among ewes. The shape (kurtosis) parameter of the model of movement cycles, one which is unlikely under ewes’ control, co-varied significantly with spatial forage offer but did not differ among ewes. We conclude that ewes allocated foraging time along a series of similar movement efforts irrespective of forage availability at small patches. Average forage scarcity at multi-patch level increases the ratio of searching to feeding time. This results in apparent selective time allocation to richer forage areas but does not imply evidence for oriented movement at a landscape scale. We advance a behavioral-based definition of forage patches and discuss its implications in developing foraging theory and models. The P-S model applied to high-frequency position data of large herbivores substantially improves the interpretation of the factors controlling their time allocation in space with respect to previous models of herbivore spatial behavior by discriminating among behavioral-based and environmentally induced components of their movements.  相似文献   

8.
Processes occurring within small areas (patch-scale) that influence species richness and spatial heterogeneity of larger areas (landscape-scale) have long been an interest of ecologists. This research focused on the role of patch-scale deterministic chaos arising in phytoplankton assemblages characteristic of “Rock-Paper-Scissors” population dynamics (i.e., competitively non-hierarchical). We employed a simple 2-patch model configuration with lateral mixing and through-flow, and tested the robustness of species richness at the scale of the landscape and spatial heterogeneity. Three different assemblages were used that in a dimensionless box model configuration exhibited chaotic behavior. Our results showed that when a spatial dimension was added to the model configuration, and when all species were shared between patches (i.e., no invading populations), chaos-induced species richness and spatial heterogeneity were quickly reduced with the onset of mixing. While assemblages in each patch were comprised of exactly the same species, they differed in their proportional population densities due to differing stages of succession and the incidence of alternative assemblage structures. Even at very low mixing rates (0.001 d−1), which produced low passive migration rates (0.1% of the total biomass per day), the incidence of high richness and heterogeneity decreased by ∼80%. Interestingly, this sensitivity was not the same for the three assemblages tested. Declines in species richness and spatial heterogeneity associated with mixing were greater in assemblages comprised of competitively dissimilar species (based on the area occupied in the resource-tradeoff space defined by the R* model). The underlying mechanisms may involve the degree to which nutrient dynamics are altered with the arrival of immigrants. Our findings suggest that in partially to well-mixed aquatic systems, the roles of patch-scale non-hierarchical competition and chaos as factors maintaining species richness and spatial heterogeneity may be limited. However, in aquatic systems that experience periods of very low mixing, or even disconnection, non-hierarchical competition and chaos might indeed contribute significantly to biodiversity.  相似文献   

9.
Tack AJ  Ovaskainen O  Pulkkinen P  Roslin T 《Ecology》2010,91(9):2660-2672
Recent work has shown a potential role for both host plant genotype and spatial context in structuring insect communities. In this study, we use three separate data sets on herbivorous insects on oak (Quercus robur) to estimate the relative effects of host plant genotype (G), location (E), and the G x E interaction on herbivore community structure: a common garden experiment replicated at the landscape scale (approximately 5 km2); two common gardens separated at the regional scale (approximately 10 000 km2); and survey data on wild trees in various spatial settings. Our experiments and survey reveal that, at the landscape scale, the insect community is strongly affected by the spatial setting, with 32% of the variation in species richness explained by spatial connectivity. In contrast, G and G x E play minor roles in structuring the insect community. Results remained similar when extending the spatial scale of the study from the more local (landscape) level to the regional level. We conclude that in our study system, spatial processes play a major role in structuring these insect communities at both the landscape and regional scales, whereas host plant genotype seems of secondary importance.  相似文献   

10.
Persson A  Stenberg M 《Ecology》2006,87(8):1953-1959
Optimality theory rests on the assumptions that short-term foraging decisions are driven by variation in environmental quality, and that these decisions have important implications for long-term fitness. These assumptions, however, are rarely tested in a field setting. We linked behavioral foraging decisions in food patches with measures of environmental quality covering larger spatial (resource density) or temporal (growth parameters) scales. In 10 lakes, we measured the food density at which benthic fish give up foraging in experimental food patches (giving-up density, GUD), quantified the biomass of benthic invertebrates, and calculated the maximum individual size (L(infinity)) of bream (Abramis brama L.), a typical benthivore in these lakes. We found positive relationships between resource density and both GUD and L(infinity), and a positive relationship between L(infinity) and GUD. Prey characterized as vulnerable to predation contributed most to the relationships between resource density and either GUD or L(infinity). A path analysis showed that resource density and L(infinity) directly explained 54% and 28%, respectively, of the variation in GUD, whereas 86% of the variation in L(infinity) was explained by resource density, with mostly indirect contribution from GUD. We conclude that the short-term foraging behavior of benthivores matched our expectations based on optimality theory by being positively linked to variables on environmental quality operating at both a larger spatial scale and a longer temporal scale.  相似文献   

11.
Collins SL  Smith MD 《Ecology》2006,87(8):2058-2067
Natural disturbances affect spatial and temporal heterogeneity in plant communities, but effects vary depending on type of disturbance and scale of analysis. In this study, we examined the effects of fire frequency (1-, 4-, and 20-yr intervals) and grazing by bison on spatial and temporal heterogeneity in species composition in tallgrass prairie plant communities. Compositional heterogeneity was estimated at 10-, 50-, and 200-m2 scales. For each measurement scale, we used the average Euclidean Distance (ED) between samples within a year (2000) to measure spatial heterogeneity and between all time steps (1993-2000) for each sample to measure temporal heterogeneity. The main effects of fire and grazing were scale independent. Spatial and temporal heterogeneity were lowest on annually burned sites and highest on infrequently burned (20-yr) sites at all scales. Grazing reduced spatial heterogeneity and increased temporal heterogeneity at all scales. The rate of community change over time decreased as fire frequency increased at all scales, whereas grazing had no effect on rate of community change over time at any spatial scale. The interactive effects of fire and grazing on spatial and temporal heterogeneity differed with scale. At the 10-m2 scale, grazing increased spatial heterogeneity in annually burned grassland but decreased heterogeneity in less frequently burned areas. At the 50-m2 scale, grazing decreased spatial heterogeneity on 4-yr burns but had no effect at other fire frequencies. At the 10-m scale, grazing increased temporal heterogeneity only on 1- and 20-yr burn sites. Our results show that the individual effects of fire and grazing on spatial and temporal heterogeneity in mesic prairie are scale independent, but the interactive effects of these disturbances on community heterogeneity change with scale of measurement. These patterns reflect the homogenizing impact of fire at all spatial scales, and the different frequency, intensity, and scale of patch grazing by bison in frequently burned vs. infrequently burned areas.  相似文献   

12.
Spatial structure and dynamics of multiple populations may explain species distribution patterns in patchy communities with heterogeneous disturbance regimes, especially when species have poor dispersal. The endemic-rich Florida (U.S.A.) rosemary scrub occupies about 4% of the west portion of Archbold Biological Station and occurs scattered within a matrix of less xeric vegetation. Longer fire-return times and higher frequency of open patches in rosemary scrub provide favorable habitat for many plant species. Occupancy of 123 species of vascular plants and ground lichens in 89 patches was determined by repeated site surveys. About two-thirds of the species occurring at more than 14 patches had a significant logistic regression of presence on time-since-fire, patch size, patch isolation, or their interactions. Species with presence related to the interaction between patch isolation and patch size were primarily herbs and small shrubs specializing in rosemary scrub. These results suggest the importance of spatial characteristics of the landscape for population turnover of these species. An incidence-based metapopulation model was used to predict extinction and colonization probabilities of those species with presence in rosemary scrub patches related to the studied spatial variables. This is the first attempt to apply incidence-based metapopulation models to plants. The results showed stronger effects of patch size and patch isolation on extinction probabilities of herbs than on those of woody species. Because of their effect on spatial heterogeneity and habitat availability, fire suppression and habitat destruction may decrease persistence probabilities for these rosemary scrub specialists, many of which are endangered species.  相似文献   

13.
沙地退化植被恢复过程中植被的空间异质性   总被引:1,自引:0,他引:1  
通过野外取样和室内分析,应用地统计学分析方法研究了科尔沁沙地退化植被恢复过程中不同封育年限(0、11和20年)的流动沙丘的植被盖度和丰富度特征及其空间异质性规律。结果表明,随着流动沙丘的固定和封育年限的增加,植被盖度和丰富度逐渐增加。在流动沙丘植被恢复过程中,植被盖度和丰富度具有明显的空间自相关性,其空间自相关范围从封育0年的流动沙丘(46.05m和33.63m)、封育11的流动沙丘(21.63m和17.25m)到封育20年的流动沙丘(26.12m和24.18m)先减小后增加,但均未超出我们的研究尺度50m,表现出不同大小的斑块形式分布的小尺度分布格局。由半方差函数及其参数和空间分布格局图分析得出,随着沙丘植被的恢复,植被特征的空间异质性在所研究的尺度上表现出先增大(封育0年到封育11年)后减小(封育11年到封育20年)的变化特点。  相似文献   

14.
In tallgrass prairie, disturbances such as grazing and fire can generate patchiness across the landscape, contributing to a shifting mosaic that presumably enhances biodiversity. Grassland birds evolved within the context of this shifting mosaic, with some species restricted to one or two patch types created under spatially and temporally distinct disturbance regimes. Thus, management-driven reductions in heterogeneity may be partly responsible for declines in numbers of grassland birds. We experimentally altered spatial heterogeneity of vegetation structure within a tallgrass prairie by varying the spatial and temporal extent of fire and by allowing grazing animals to move freely among burned and unburned patches (patch treatment). We contrasted this disturbance regime with traditional agricultural management of the region that promotes homogeneity (traditional treatment). We monitored grassland bird abundance during the breeding seasons of 2001-2003 to determine the influence of altered spatial heterogeneity on the grassland bird community. Focal disturbances of patch burning and grazing that shifted through the landscape over several years resulted in a more heterogeneous pattern of vegetation than uniform application of fire and grazing. Greater spatial heterogeneity in vegetation provided greater variability in the grassland bird community. Some bird species occurred in greatest abundance within focally disturbed patches, while others occurred in relatively undisturbed patches in our patch treatment. Henslow's Sparrow, a declining species, occurred only within the patch treatment. Upland Sandpiper and some other species were more abundant on recently disturbed patches within the same treatment. The patch burn treatment created the entire gradient of vegetation structure required to maintain a suite of grassland bird species that differ in habitat preferences. Our study demonstrated that increasing spatial and temporal heterogeneity of disturbance in grasslands increases variability in vegetation structure that results in greater variability at higher trophic levels. Thus, management that creates a shifting mosaic using spatially and temporally discrete disturbances in grasslands can be a useful tool in conservation. In the case of North American tallgrass prairie, discrete fires that capitalize on preferential grazing behavior of large ungulates promote a shifting mosaic of habitat types that maintain biodiversity and agricultural productivity.  相似文献   

15.
Freestone AL  Inouye BD 《Ecology》2006,87(10):2425-2432
Understanding the large-scale distribution of species diversity requires distinguishing two of the primary factors that cause compositional differences: dispersal limitation and environmental variation. In a community with a naturally discontinuous spatial structure, we asked (1) at what scale(s) nonrandom variation in species composition occurs and (2) at what scale(s) such variation is associated with spatial separation, indicative of dispersal limitation, and at what scale(s) variation is associated with environmental heterogeneity? We sampled 50 seeps (small wetlands) on five serpentine outcrops. Using a randomization model, we showed that additive beta diversity (a measure of community dissimilarity) was lower than random within seeps and higher than random among both seeps and outcrops. Using Mantel tests, we showed that plant community dissimilarity, in both the full seep assemblage as well as in a subset of seep endemics, at the two larger scales was associated with different forms of environmental heterogeneity and, at the largest scale, was also associated with geographic distance. We conclude that diversity in this system is shaped by multiple scales of heterogeneity and by dispersal limitation at the largest scale.  相似文献   

16.
During the last decades, fragmentation has become an important issue in ecological research. Habitat fragmentation operates on spatial scales ranging over several magnitudes from patches to landscapes. We focus on small-scale fragmentation effects relevant to animal foraging decision making that could ultimately generate distribution patterns. In a controlled experimental environment, we tested small-scale fragmentation effects in artificial sea grass on the feeding behaviour of juvenile cod (Gadus morhua). Moreover, we examined the influence of fragmentation on the distribution of one of the juvenile cod’s main prey resources, the grass shrimp (Palaemon elegans), in association with three levels of risk provided by cod (no cod, cod chemical cues and actively foraging cod). Time spent by cod within sea grass was lower in fragmented landscapes, but total shrimp consumption was not affected. Shrimp utilised vegetation to a greater extent in fragmented treatments in combination with active predation. We suggest that shrimp choose between sand and vegetation habitats to minimize risk of predation according to cod habitat-specific foraging capacities, while cod aim to maximize prey-dependent foraging rates, generating a habitat-choice game between predator and prey. Moreover, aggregating behaviour in grass shrimp was only found in treatments with active predation. Hence, we argue that both aggregation and vegetation use are anti-predator defence strategies applied by shrimp. We therefore stress the importance of considering small-scale behavioural mechanisms when evaluating consequences from habitat fragmentation on trophic processes in coastal environments.  相似文献   

17.
Kumar S  Stohlgren TJ  Chong GW 《Ecology》2006,87(12):3186-3199
Spatial heterogeneity may have differential effects on the distribution of native and nonnative plant species richness. We examined the effects of spatial heterogeneity on native and nonnative plant species richness distributions in the central part of Rocky Mountain National Park, Colorado, USA. Spatial heterogeneity around vegetation plots was characterized using landscape metrics, environmental/topographic variables (slope, aspect, elevation, and distance from stream or river), and soil variables (nitrogen, clay, and sand). The landscape metrics represented five components of landscape heterogeneity and were measured at four spatial extents (within varying radii of 120, 240, 480, and 960 m) using the FRAGSTATS landscape pattern analysis program. Akaike's Information Criterion adjusted for small sample size (AICc) was used to select the best models from a set of multiple linear regression models developed for native and nonnative plant species richness at four spatial extents and three levels of ecological hierarchy (i.e., landscape, land cover, and community). Both native and nonnative plant species richness were positively correlated with edge density, Simpson's diversity index and interspersion/juxtaposition index, and were negatively correlated with mean patch size. The amount of variation explained at four spatial extents and three hierarchical levels ranged from 30% to 70%. At the landscape level, the best models explained 43% of the variation in native plant species richness and 70% of the variation in nonnative plant species richness (240-m extent). In general, the amount of variation explained was always higher for nonnative plant species richness, and the inclusion of landscape metrics always significantly improved the models. The best models explained 66% of the variation in nonnative plant species richness for both the conifer land cover type and lodgepole pine community. The relative influence of the components of spatial heterogeneity differed for native and nonnative plant species richness and varied with the spatial extent of analysis and levels of ecological hierarchy. The study offers an approach to quantify spatial heterogeneity to improve models of plant biodiversity. The results demonstrate that ecologists must recognize the importance of spatial heterogeneity in managing native and nonnative plant species.  相似文献   

18.
Kitzberger T  Chaneton EJ  Caccia F 《Ecology》2007,88(10):2541-2554
Resource pulses often involve extraordinary increases in prey availability that "swamp" consumers and reverberate through indirect interactions affecting other community members. We developed a model that predicts predator-mediated indirect effects induced by an epidemic prey on co-occurring prey types differing in relative profitability/preference and validated our model by examining current-season and delayed effects of a bamboo mass seeding event on seed survival of canopy tree species in mixed Patagonian forests. The model shows that predator foraging behavior, prey profitability, and the scale of prey swamping influence the character and strength of short-term indirect effects on various alternative prey. When in large prey-swamped patches, nonselective predators decrease predation on all prey types. Selective predators, instead, only benefit prey of similar quality to the swamping species, while very low or high preference prey remain unaffected. Negative indirect effects (apparent competition) may override such positive effects (apparent mutualism), especially for highly preferred prey, when prey-swamped patches are small enough to allow predator aggregation and/or predators show a reproductive numerical response to elevated food supply. Seed predation patterns during bamboo (Chusquea culeou) masting were consistent with predicted short-term indirect effects mediated by a selective predator foraging in large prey-swamped patches. Bamboo seeds and similarly-sized Austrocedrus chilensis (ciprés) and Nothofagus obliqua (roble) seeds suffered lower predation in bamboo flowered than nonflowered patches. Predation rates on the small-seeded Nothofagus dombeyi (coihue) and the large-seeded Nothofagus alpina (rauli) were independent of bamboo flowering. Indirect positive effects were transient; three months after bamboo seeding, granivores preyed heavily upon all seed types, irrespective of patch flowering condition. Moreover, one year after bamboo seeding, predation rates on the most preferred seed (rauli) was higher in flowered than in nonflowered patches. Despite rapid predator numerical responses, short-term positive effects can still influence community recruitment dynamics because surviving seeds may find refuge beneath the litter produced by bamboo dieback. Together, our theoretical analysis and experiments indicate that indirect effects experienced by alternative prey during and after prey-swamping episodes need not be universal but can change across a prey quality spectrum, and they critically depend on predator-foraging rules and the spatial scale of swamping.  相似文献   

19.
The conservation implications of large‐scale rainforest clearing and fragmentation on the persistence of functional and taxonomic diversity remain poorly understood. If traits represent adaptive strategies of plant species to particular circumstances, the expectation is that the effect of forest clearing and fragmentation will be affected by species functional traits, particularly those related to dispersal. We used species occurrence data for woody plants in 46 rainforest patches across 75,000 ha largely cleared of forest by the early 1900s to determine the combined effects of area reduction, fragmentation, and patch size on the taxonomic structure and functional diversity of subtropical rainforest. We compiled species trait values for leaf area, seed dry mass, wood density, and maximum height and calculated species niche breadths. Taxonomic structure, trait values (means, ranges), and the functional diversity of assemblages of climbing and free‐standing plants in remnant patches were quantified. Larger rainforest patches had higher species richness. Species in smaller patches were taxonomically less related than species in larger patches. Free‐standing plants had a high percentage of frugivore dispersed seeds; climbers had a high proportion of small wind‐dispersed seeds. Connections between the patchy spatial distribution of free‐standing species, larger seed sizes, and dispersal syndrome were weak. Assemblages of free‐standing plants in patches showed more taxonomic and spatial structuring than climbing plants. Smaller isolated patches retained relatively high functional diversity and similar taxonomic structure to larger tracts of forest despite lower species richness. The response of woody plants to clearing and fragmentation of subtropical rainforest differed between climbers and slow‐growing mature‐phase forest trees but not between climbers and pioneer trees. Quantifying taxonomic structure and functional diversity provides an improved basis for conservation planning and management by elucidating the effects of forest‐area reduction and fragmentation. Efectos de la Forma de Crecimiento y Atributos Funcionales en la Respuesta de Plantas Leñosas al Desmonte y Fragmentación de Bosque Lluvioso Subtropical  相似文献   

20.
Morales JM  Carlo TA 《Ecology》2006,87(6):1489-1496
For many plant species, seed dispersal is one of the most important spatial demographic processes. We used a diffusion approximation and a spatially explicit simulation model to explore the mechanisms generating seed dispersal kernels for plants dispersed by frugivores. The simulation model combined simple movement and foraging rules with seed gut passage time, plant distribution, and fruit production. A simulation experiment using plant spatial aggregation and frugivore density as factors showed that seed dispersal scale was largely determined by the degree of plant aggregation, whereas kernel shape was mostly dominated by frugivore density. Kernel shapes ranged from fat tailed to thin tailed, but most shapes were between an exponential and that of the solution of a diffusion equation. The proportion of dispersal kernels with fat tails was highest for landscapes with clumped plant distributions and increased with increasing number of dispersers. The diffusion model provides a basis for models including more behavioral details but can also be used to approximate dispersal kernels once a diffusion rate is estimated from animal movement data. Our results suggest that important characteristics of dispersal kernels will depend on the spatial pattern of plant distribution and on disperser density when frugivores mediate seed dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号