首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present paper deals with accidents risk in batch reactors. It identifies the conditions for the occurrence of a thermal runaway and develops a probabilistic approach to assess the relevant risk. It investigates also the conditions for optimal synthesis of peracetic acid (PAA) with hydrogen peroxide (HP) and acetic acid (AA). The kinetic model of reversible reaction and side reaction of PAA synthesis is used to predict reactor temperature and molar ratio of PAA by ASPEN PLUS software. A sensitivity analysis is performed under different conditions such as constant temperature or adiabatic process with different concentrations of sulfuric acid. Assuming a prior cooling system failure, the conditions for reaction runaway triggering a thermal accident are identified in the case of PAA synthesis. Monte Carlo simulations are used in order to calculate the conditional probability of accident and optimize the synthesis of PAA.  相似文献   

2.
Styrene is a reactive monomer commonly used to produce polystyrene and other copolymers. Unintended thermal runaway polymerization reactions of styrene keep reoccurring and have led to catastrophic consequences. One of the possible causes of these runaway incidents involves the contamination of the styrene monomer by incompatible species, which was not adequately investigated and documented. This study focuses on the quantification of thermal runaway hazards of styrene in contact with a series of contamination substances by adopting calorimetric analysis. Both Differential Scanning Calorimeter (DSC) and Advanced Reactive System Screening Tool (ARSST) were employed to examine the exothermic characteristics of styrene mixed with contaminating substances at different concentration levels and mixing conditions. Key safety parameters of the exothermic reaction, such as the onset temperature, the overall heat release, the maximum self-heating rate, as well as the activation energy, were obtained. The results indicated that the thermal runaway polymerization of purified styrene was significantly altered by the presence of contaminant species. Water effectively retarded and quenched the runaway polymerization at a higher temperature range. Alkaline had no substantial effect on the thermal runaway characteristics. The presence of acid solution under both static contact and vigorous mixing condition significantly promoted the thermal polymerization of styrene. A trace amount of concentrated acid initiated violent exothermic activity even at room temperature; and the severity of the reaction was profoundly impacted by the mass-transfer. Our study demonstrates significant implications in the prevention of runaway incidents during transportation and storage of styrene.  相似文献   

3.
Thermal safety and risk of accidents are still challenging topics in the case of batch reactors carrying exothermic reactions. In the present paper, the authors develop an integrated framework focusing on defining the governing parameters for the thermal runaway and evaluating the subsequent risk of accident. A relevant set of criteria are identified in order to find the prior conditions for a thermal runaway: failure of the cooling system, critical temperature threshold, successive derivatives of the temperature (first and second namely) vs. time and no detection in due time (reaction time) of the runaway initiation. For illustrative purposes, the synthesis of peracetic acid (PAA) with hydrogen peroxide (HP) and acetic acid (AA) is considered as case study. The critical and threshold values for the runaway accident are identified for selected sets of input data. Under the conditional probability of prior cooling system failure, Monte Carlo simulations are performed in order to estimate the risk of thermal runaway accident in batch reactors. It becomes then possible to predict the ratio of reactors, within an industrial plant, potentially subject to thermal runaway accident.  相似文献   

4.
过氧化氢异丙苯热稳定性与热安全性研究   总被引:1,自引:1,他引:1  
为研究过氧化氢异丙苯(CHP)的热稳定性和热安全性,利用C80微量量热仪对CHP在空气中的热分解进行试验研究。利用热分析技术研究CHP的热分解,得到了升温速率对CHP热分解的影响,CHP热分解的活化能,绝热条件下最大反应速率到达时间Tmrad和不同包装下的自加速分解温度。结果表明:随着升温速率的增加,CHP的起始放热温度和最大放热温度随之升高;CHP热分解的活化能范围为52~91 kJ/mol;Tmrad为1,8,24,50和100 h时对应的起始温度分别为118.08,75.41,55.83,44.83和34.52℃;CHP的储罐内径越大,其对应的自加速分解温度越低。  相似文献   

5.
Methyl ethyl ketone (MEK) oxidation via H2O2 with tungsten-based polyoxometalate catalysts has gained much attention with an ever-growing body of knowledge focusing on the development of environmentally benign processes in chemical industry. In this study, two calorimetry techniques, differential scanning calorimetry (DSC) and Phi-TEC II adiabatic calorimetry, were employed to analyze the thermal hazards associated with the 2-butanol oxidation reaction system. Hydrogen peroxide was the oxidant and a tungsten-based polyoxometalate as the catalyst. Gas chromatography-mass spectrometry was used for identification of the organic products. Important thermal kinetic data were obtained including “onset” temperature, heat of reaction, adiabatic temperature rise and self-heat rate. From DSC results, three exothermic peaks were detected with a total heat generation of approximately 1.26 kJ/g sufficiently to induce a thermal runaway. Possible reaction pathway for three stages were proposed based on both DSC and GC-MS results. One exotherm was detected by Phi-TEC II calorimeter and the pressure versus temperature profile together with the DSC and GC-MS data demonstrate the complexity of 2-butanol reaction system under both thermal screening and adiabatic conditions.  相似文献   

6.
Laboratory hydrogen generators, medical oxygen, and micro-breweries are examples of modular and micro technologies that are commercial successes. Researchers, patients, and unskilled workers operate these facilities but more complex processes require highly qualified personnel to ensure they operate safely. Modular-micro processes in isolated locations meet economic objectives when operated remotely thereby minimizing labor costs. Mitigating the risk requires a comprehensive hazards analysis with advanced control systems particularly for explosive and toxic compounds. Here, we propose a method called Failure Mode Risk Decision (FMRD) to review the inherent hazards of a micro-refinery unit (MRU) that converts flared and wasted natural gas to long chain hydrocarbons. This approach combines the Process Flow Failure Mode (PFFM) methodology as a systematic and reliable technique with a novel numerical risk assessment to improve the analytical evaluation of hazardous conditions. The objective is to combine causes and consequences in a single metric, where scaled probability of evident causes and severity of consequences are used to derive a risk level measure. With the proposed metric, the magnitude of a potential hazard is directly correlated with the risk level. This mechanism identifies extra risk scenarios compared to the classical hazard analysis method and provides a straightforward comprehensive numerical assessment to represent the inherent and residual risks to facilitate justifying the hazardous scenarios. Accordingly, we design a safety loop and supply all the required facilities to remove the potential risks at the process plant. Not only the proposed methodology clarifies the risks of the MRU presented in this study, but can be extended to review the hazards of other chemical process plants.  相似文献   

7.
Thermal analysis by differential scanning calorimetry and thermogravimetric/differential thermal analysis mass spectrometry, adiabatic calorimetry, a gram-scale heating test, and infrared spectroscopy were performed to evaluate the thermal hazards of diphenylmethane diisocyanate (MDI) and prove the occurrence of a runaway reaction. The self-polymerization of MDI was found to occur at about 340 °C under rapid heating conditions. Carbon dioxide was eliminated and heat was generated to allow polymerization. Under adiabatic and closed conditions, the runaway reaction of MDI can begin at least from 220 °C. Besides it is highly probable that the runaway reaction of MDI can begin from a lower temperature in an actual process scale. More heat was generated than in the previous case and the pressure rose rapidly. A closed 2-mm-thick glass vessel exploded because of the runaway reaction of MDI even if the temperature was lower than 300 °C. Therefore, MDI could cause fatal runaway reactions below 300 °C, where MDI had been assumed to self-polymerize by eliminating carbon dioxide previously.  相似文献   

8.
In recent years, the global demand for liquefied natural gas (LNG) as an energy source is increasing at a very fast rate. In order to meet this demand, a large number of facilities such as platforms, FPSO (floating production, storage and offloading), FSRU (floating storage and regasification unit) and LNG ships and terminals are required for the storage, processing and transportation of LNG. Failure of any of these facilities may expose the market, companies, personnel and the environment to hazards, hence making the application of risk analysis to the LNG sector a very topical issue throughout the world. To assess the risk of accidents associated with LNG facilities and carriers, various risk analysis approaches have been employed to identify the potential hazards, calculate the probability of accidents, as well as assessing the severity of consequences. Nonetheless, literature on classification of the risk analysis models applied to LNG facilities is very limited. Therefore, to reveal the holistic issues and future perspectives on risk analysis of LNG facilities, a systematic review of the current state-of-the-art research on LNG risk analysis is necessary. The aim of this paper is to review and categorize the published literature about the problems associated with risk analysis of LNG facilities, so as to improve the understanding of stakeholders (researchers, regulators, and practitioners). To achieve this aim, scholarly articles on LNG risk analysis are identified, reviewed, and then categorized according to risk assessment methods (qualitative, semi-qualitative or quantitative; deterministic or probabilistic; conventional or dynamic), tools (ETA, FTA, FMEA/FMECA, Bayesian network), output/strategy (RBI, RBM, RBIM, facility siting, etc.), data sources (OREDA handbook, published literature, UK HSE databases, regulatory agencies' reports, industry datasets, and experts’ consultations), applications (LNG carriers and LNG fuelled ships, LNG terminals and stations, LNG offshore floating units, LNG plants), etc. Our study will not only be useful to researchers engaged in these areas but will also assist regulators, policy makers, and operators of LNG facilities to find the risk analysis models that fit their specific requirements.  相似文献   

9.
混酸中甲苯半间歇硝化过程的危险性研究   总被引:2,自引:2,他引:2  
为了解甲苯在混酸中硝化的危险性,用差示扫描量热法(DSC)测试甲苯、混酸及一硝基甲苯的热分解情况,用反应量热仪(RC1e)研究搅拌速度、温度及硝酸过用率3因素对目的反应的影响。结果表明,混酸分解温度最低,而当目的反应的3因素出现异常,以及反应过程中发生冷却失效时,均可导致硝化反应体系不稳定,此时若不停止加料,并采取措施,易引起混酸的分解,进一步可引起一硝基甲苯的分解,导致严重后果。  相似文献   

10.
A serious fire and explosion accident that resulted in massive crude oil leakage and severe environmental pollution occurred on 16 July, 2010, in Dalian Port, China. To investigate the root cause of accident and conduct a wide-range investigation, desulfurizing agent JH02, which has a similar ingredient to the desulfurizing agent HD used in Dalian Port, and TS02 were employed in this study to determine the role of desulfurizing agents in the accident. The thermal behavior of crude oil, desulfurizing agents, and their mixtures was measured by using a C80 calorimeter. By using the calorimetric data, the kinetic parameters of the chemical reaction, such as activation energy, pre-exponential factor, and self-accelerating decomposition temperature of crude oil, as well as JH02, TS02, and their mixtures, were calculated and compared. The results indicated that the direct cause of the accident was the thermal runaway initiated by the increasing instability of the crude oil–desulfurizing agent mixture. Excess pressure in the oil pipeline triggered the physical explosion, but it alone was not enough to cause a serious damage. Furthermore, a stable desulfurizing agent such as TS02 could not ensure a safe desulfurizing process. The results of this study would benefit the safety management of desulfurizing processes during production and storage.  相似文献   

11.
The present study concerns a hazardous event which occurred in an industrial storage tank of a ground insecticide. A preliminary post-accident approach of the hazard evaluation is performed. The rapid report of the presence of an unstable functional group in the active product and of its potential thermal instability (CHETAH indices) has led to complete this examination by an experimental study of thermal analysis using isotherm exposition measurement (DTA) or with temperature programming by differential scanning calorimetry (DSC) and oxidability tests (BAM). The apparent kinetics of decomposition of the active matter of the ground insecticide has been represented by a global Arrhenius law.

A model designed for the simulation of heterogeneous thermal runaways based on the numerical solution of the transient mass and energy balances has been further applied to define the critical conditions of the storage and simulate its behavior.

The results obtained during this analysis with the experienced feedback allowed us on one side to explain the hazardous event and especially on the other side to modify the operating protocol of the conditions of formulation of the active matter on the inert mineral support.  相似文献   


12.
分析通风和电池组数量对电池组热失控发展蔓延热传递机制的影响.选择荷电状态(SOC)为100%的镍钴锰(NCM523)三元锂离子动力电池组作为研究对象,改变电池组底部外加热源的热流量和加热时间,利用多物理场仿真软件COMSOL,进行热滥用导致不同风速通风环境和不同电池数量电池组热失控过程的模拟.结果表明:随着风速不断增大...  相似文献   

13.
Progressive cavity pump (PCP), which has problems such as invalid and leakage of rubber bushings, is employed in heavy oil field exploitation. In this paper, based on the thermal aging mechanical test of rubber and the fitting precision evaluation result of the constitutive model, the rubber constitutive model is optimized; the finite element model of PCP is established; the deformation law of stator bushing inner wall is quantitatively analyzed by numerical simulation method; and the phenomenon that temperature field distribution and thermal aging failure of stator rubber bushings is revealed. As results: The increase in well depth, which leads to the increase in the overall temperature of the stator bushing and the decrease of the thermal hysteresis, have greatest influence on the temperature of the stator bushing; the interference, which leads the maximum temperature increases first and then decreases, has a great impact on the thermal hysteresis; and the eccentricity have little effect on the thermal hysteresis of the stator bushing. The research results provide theoretical support to optimize stator and rotor parameter matching, recommending applicable working conditions, improving invalid of stator bushing, pump leakage and other issues.  相似文献   

14.
为研究2-氨基-23,-二甲基丁酰胺氧化合成的热危险性,采用差示扫描量热仪(DSC)测试2-氨基-2,3-二甲基丁腈和2-氨基-2,3-二甲基丁酰胺的热分解情况,采用反应量热仪(RC1)研究反应温度、双氧水滴加速度和氢氧化钠用量对反应的影响。研究结果显示,2-氨基-2,3-二甲基丁腈吸热热分解温度为149.5℃2,-氨基-2,3-二甲基丁酰胺表现为吸热和放热2段分解过程,吸热和放热分解温度分别为234.4℃和456℃。反应放热速率主要为加料控制,但是,存在一定的热累积。热失控体系最高温度(MTSR)低于2-氨基-23,-二甲基丁腈和2-氨基-23,-二甲基丁酰胺的分解温度,高于体系沸腾温度,在热失控的条件下,反应体系容易导致冲料危险;在优惠的工艺条件范围内,提高反应温度,延长滴加时间,可降低反应的MTSR,提高热转化率和反应安全性。  相似文献   

15.
Latex is extensively used in industrial products. However, completing some processes at scale leads to unacceptable levels of risk that need to be quantified and mitigated. Systemic risks must be eliminated wherever possible, and safety takes priority over efficiency and quality. To assess the process risks accurately, four raw materials were examined in this study: polyvinyl acetate (PVA), latex process-initiator-ammonium persulfate (APS) and hydrogen peroxide (H2O2), and vinyl acetate monomer (VAM). The physicochemical composition of the PVA latex process was determined via calorimeters, including differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2). The calorimetry results showed that the protective colloid was a critical component in the polymerisation reaction. In addition, when adding initiators to the system, it is vital to observe the normal ratio of materials and keep the stirring system operating. The scenario system also simulated the effects of shutting down various inhibitory programs, including the build-up of free radicals that could result in a runaway reaction when the initiator was added in excess. On the other hand, the result of the risk matrix displayed as a medium level, indicating that although the probability of an accident is low, the resulting severity is at disaster level. As a result, this study provides process safety engineers with a reliable frame of reference for assessing the potential dangers in the PVA latex manufacturing process.  相似文献   

16.
为了降低和控制地铁深基坑施工风险,避免在施工过程中造成深基坑坍塌事故,以重庆市某地铁站深基坑开挖为例,进行了深基坑开挖风险评估。建立了深基坑坍塌事故导致人员伤亡的事故树模型,再通过事故树建立层次结构模型,将事故树的结构重要度转化为层次分析法中的判别因子,结合层次分析法的权重计算及排序,对深基坑坍塌事故的致灾因素进行了定性识别和定量分析。结果表明,施工地质条件复杂、设计方案不合理、勘察资料有误等事件为主要致灾因素。在地铁深基坑施工过程中应做好动态监测及日常管理工作,保证勘察设计的准确性与可行性。改进后的模型可为企业施工管理提供理论指导。  相似文献   

17.
作业场所职业危害监管具有很强的时空特性,将WebGIS应用于作业场所职业危害监管信息系统,可将空间区域信息和职业危害及监管信息相结合,为政府提供方便、快捷、可视化的职业危害监管依据。由于WebGIS系统空间数据量大、服务器过载、网络传输速度慢等问题降低了系统响应速度,限制了在职业危害监管信息系统中的应用。作业场所职业危害监管分为"国家-省级-市级-县级-用人单位"5级逻辑结构,而WebGIS的功能需求分为"国家-省级-市级-县级"4级逻辑结构,笔者将WebGIS的空间数据分为"国家-省级-市级-县级"4级分布式存储,有效地解决了WebGIS的瓶颈问题,提高了系统响应速度,同时也满足作业场所职业危害监管信息系统的功能需求。  相似文献   

18.
以大连某乙炔厂为例,针对其生产工艺将生产单元划分为气体发生、净化与干燥、压缩与充装3个子单元,找出各子单元中引起火灾爆炸事故的危险因素并进行详细分析和说明,采用层次分析法进行定量评价.基于定量评价结果对生产单元火灾爆炸事故的诱发因素进行总排序,对危险性较大的因素提出有针对性的预防措施,以保证乙炔生产过程的安全可靠,为提高乙炔生产企业的安全生产水平提供参考.  相似文献   

19.
20.
首次通过解析结构模型对多式联运网络的风险因素结构问题进行了深入研究,旨在揭示多式联运网络风险因素之间的复杂层级关系.以多式联运网络为研究对象,首先分析了多式联运网络风险内涵,接着从外部和内部因素两方面对多式联运网络风险因素的构成进行辨识,进而构建了多式联运网络风险因素的多级递阶解析结构模型,最终探究了多式联运网络风险因素的结构及层级关系.结果表明,多式联运网络风险影响因素分为5个层次,其中顶层因素指多式联运网络的运行安全,最直接因素包括外部环境和网络节点,关键性因素包括载运工具、联运线路及技术手段,基础性因素包括经济发展状况、政策法律法规及人员能力素质,而深层次因素是组织管理因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号