首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Petrochemical plants and refineries consist of hundreds of pieces of complex equipment and machinery that run under rigorous operating conditions and are subjected to deterioration over time due to aging, wear, corrosion, erosion, fatigue and other reasons. These devices operate under extreme operating pressures and temperatures, and any failure may result in huge financial consequences for the operating company. To minimize the risk and to maintain operational reliability and availability, companies adopt various maintenance strategies. Shutdown or turnaround maintenance is one such strategy. In general, shutdown for inspection and maintenance is based on the original equipment manufacturer's (OEM) suggested recommended periods. However, this may not be the most optimum strategy given that operating conditions may vary significantly from company to company.The framework proposed in this work estimates the risk-based shutdown interval for inspection and maintenance. It provides a tool for maintenance planning and decision making by considering the probability of the equipment or system for failure and the likely consequences that may follow. The novel risk-based approach is compared with the conventional fixed interval approach. This former approach, characterized as it is by optimized inspection, maintenance and risk management, leads to extended intervals between shutdowns. The result is the increase in production and the consequent income of millions of dollars.The proposed framework is a cost effective way to minimize the overall financial risk for asset inspection and maintenance while fulfilling safety and availability requirements.  相似文献   

2.
Petrochemical facilities and plants require essential ongoing maintenance to ensure high levels of reliability and safety. A risk-based maintenance (RBM) strategy is a useful tool to design a cost-effective maintenance schedule; its objective is to reduce overall risk in the operating facility. In risk assessment of a failure scenario, consequences often have three key features: personnel safety effect, environmental threat and economic loss. In this paper, to quantify the severity of personnel injury and environmental pollution, a failure modes and effects analysis (FMEA) method is developed using subjective information derived from domain experts. On the basis of failure probability and consequence analysis, the risk is calculated and compared against the known acceptable risk criteria. To facilitate the comparison, a risk index is introduced, and weight factors are determined by an analytic hierarchy process. Finally, the appropriate maintenance tasks are scheduled under the risk constraints. A case study of a continuous catalytic reforming plant is used to illustrate the proposed approach. The results indicate that FMEA is helpful to identify critical facilities; the RBM strategy can increase the reliability of high-risk facilities, and corrective maintenance is the preferred approach for low-risk facilities to reduce maintenance expenditure.  相似文献   

3.
In recent years, the global demand for liquefied natural gas (LNG) as an energy source is increasing at a very fast rate. In order to meet this demand, a large number of facilities such as platforms, FPSO (floating production, storage and offloading), FSRU (floating storage and regasification unit) and LNG ships and terminals are required for the storage, processing and transportation of LNG. Failure of any of these facilities may expose the market, companies, personnel and the environment to hazards, hence making the application of risk analysis to the LNG sector a very topical issue throughout the world. To assess the risk of accidents associated with LNG facilities and carriers, various risk analysis approaches have been employed to identify the potential hazards, calculate the probability of accidents, as well as assessing the severity of consequences. Nonetheless, literature on classification of the risk analysis models applied to LNG facilities is very limited. Therefore, to reveal the holistic issues and future perspectives on risk analysis of LNG facilities, a systematic review of the current state-of-the-art research on LNG risk analysis is necessary. The aim of this paper is to review and categorize the published literature about the problems associated with risk analysis of LNG facilities, so as to improve the understanding of stakeholders (researchers, regulators, and practitioners). To achieve this aim, scholarly articles on LNG risk analysis are identified, reviewed, and then categorized according to risk assessment methods (qualitative, semi-qualitative or quantitative; deterministic or probabilistic; conventional or dynamic), tools (ETA, FTA, FMEA/FMECA, Bayesian network), output/strategy (RBI, RBM, RBIM, facility siting, etc.), data sources (OREDA handbook, published literature, UK HSE databases, regulatory agencies' reports, industry datasets, and experts’ consultations), applications (LNG carriers and LNG fuelled ships, LNG terminals and stations, LNG offshore floating units, LNG plants), etc. Our study will not only be useful to researchers engaged in these areas but will also assist regulators, policy makers, and operators of LNG facilities to find the risk analysis models that fit their specific requirements.  相似文献   

4.
The unexpected failures, the down time associated with such failures, the loss of production and, the higher maintenance costs are major problems in any process plant. Risk-based maintenance (RBM) approach helps in designing an alternative strategy to minimize the risk resulting from breakdowns or failures. Adapting a risk-based maintenance strategy is essential in developing cost-effective maintenance policies.The RBM methodology is comprised of four modules: identification of the scope, risk assessment, risk evaluation, and maintenance planning. Using this methodology, one is able to estimate risk caused by the unexpected failure as a function of the probability and the consequence of failure. Critical equipment can be identified based on the level of risk and a pre-selected acceptable level of risk. Maintenance of equipment is prioritized based on the risk, which helps in reducing the overall risk of the plant.The case study of a power-generating unit in the Holyrood thermal power generation plant is used to illustrate the methodology. Results indicate that the methodology is successful in identifying the critical equipment and in reducing the risk of resulting from the failure of the equipment. Risk reduction is achieved through the adoption of a maintenance plan which not only increases the reliability of the equipment but also reduces the cost of maintenance including the cost of failure.  相似文献   

5.
This study aims to provide the approach for inherent safety design of onshore LNG plants to be applied at the very early stages (concept definition phase) of the project development. Onshore LNG plant development project starts from the “Concept Definition” phase, where financial feasibility is estimated and major conditions, such as site location and plant foot print, are set.The inherent safety design basic criteria and design measures should be identified and selected when setting the basic conditions during the Concept Definition phase of the project development, such as the site location (relative location from populated areas), site condition (prevailing wind direction) and plant production capacity (number of process train, number of product tanks). The safety measures, which are usually not fully developed at the project early stages in the current design execution practices, are the emergency systems, which mitigate an accident escalation, the modularized plant and layout, and the tank selection.The inherent safety design measures discusses in this paper were identified based on the categories of plot plan, emergency system, and module plant application.The proposed approach will contribute to improve inherent safety design of onshore LNG plants and it will also yield schedule and cost benefits.  相似文献   

6.
In production plants, monitoring and maintaining industrial processes and emergency shutdowns are not straightforward tasks due to the large number of events and alarms which are triggered during the plant shutdown process. It is also vitally important to provide decision support to stakeholders for efficient and effective monitoring and maintenance of production process. This paper presents a novel framework and design to enhance maintenance decisions based on the knowledge gathered through the process of monitoring. This monitoring process is based on signals which are triggered during the plant safety shutdown process. We have designed and implemented a framework using an ontology and business rules to define the logical structure and operation of the petroleum plant with the objective of monitoring the cause and effect of the petroleum plant shutdown process. To enhance maintenance decisions, we have extended the ontology and the framework to ensure that decision makers have sufficient information to make the right decision at the right time. The proposed extended framework is designed, implemented and evaluated using an example petroleum production plant as a case study.  相似文献   

7.
在调研了全国各区域各行业工业厂房结构安全的基础上,提出工业厂房后期运营阶段的结构安全性和可靠性需要通过科学的维修制度来保证。分析了引起工业厂房结构失检、误判的因素,建立了相应的评价指标体系,以评价企业厂房结构安全的维护管理水平。理论分析和实例评价表明,通过提高维护管理水平可以减少厂房结构失检、误判事件的发生,加强厂房的检测、维护,可以有效预防工业厂房结构渐发性事故发生,在有限成本内实现对工业厂房结构安全管理的效益最大化。  相似文献   

8.
Many base load onshore LNG plants use large number of Air-Fin-Coolers normally mounted on the center pipe rack of the LNG process train. Further, the LNG plant modularized approach requires large, complex structures (modules) for supporting the LNG process equipment and for allowing sea and land transportation. This results in additional congestion of the plant and large voids under module-deck, which are confined by large girders. Thus, in case of leaks, the proper ventilation to reduce the accumulation of gas is critical for the safety of the plant.This paper evaluates the Air-Fin-Cooler induced air flow in modularized LNG plants using Computational Fluid Dynamics (CFD) analysis.The results of this evaluation show that the ventilation of the Air-Fin-Cooler induced air flow is influenced by the process train orientation. Further, a moderate increase is observed in specific design conditions or areas, such as shorter separation distances between modules. Based on the results of this evaluation, four design measures are proposed to optimize the use of Air-Fin-Cooler, such as train orientation against prevailing wind direction and use of the grating deck material.  相似文献   

9.
The growing demand for natural gas has pushed oil and gas exploration to more isolated and previously untapped regions around the world where construction of LNG processing plants is not always a viable option. The development of FLNG will allow floating plants to be positioned in remote offshore areas and subsequently produce, liquefy, store and offload LNG in the one position. The offloading process from an FLNG platform to a gas tanker can be a high risk operation. It consists of LNG being transferred, in hostile environments, through loading arms or flexible cryogenic hoses into a carrier which then transports the LNG to onshore facilities. During the carrier's offloading process at onshore terminals, it again involves risk that may result in an accident such as collision, leakage and/or grounding. It is therefore critical to assess and monitor all risks associated with the offloading operation. This study is aimed at developing a novel methodology using Bayesian Network (BN) to conduct the dynamic safety analysis for the offloading process of an LNG carrier. It investigates different risk factors associated with LNG offloading procedures in order to predict the probability of undesirable accidents. Dynamic failure assessment using Bayesian theory can estimate the likelihood of the occurrence of an event. It can also estimate the failure probability of the safety system and thereby develop a dynamic failure assessment tool for the offloading process at a particular FLNG plant. The main objectives of this paper are: to understand the LNG offloading process, to identify hazardous events during offloading operation, and to perform failure analysis (modelling) of critical accidents and/or events. Most importantly, it is to evaluate and compare risks. A sensitivity analysis has been performed to validate the risk models and to study the behaviour of the most influential factors. The results have indicated that collision is the most probable accident to occur during the offloading process of an LNG carrier at berth, which may have catastrophic consequences.  相似文献   

10.
Liquefied natural gas (LNG) is widely used to cost-effectively store and transport natural gas. However, a spill of LNG can create a vapor cloud, which can potentially cause fire and explosion. High expansion (HEX) foam is recommended by the NFPA 11 to mitigate the vapor hazard and control LNG pool fire. In this study, the parameters that affect HEX foam performance were examined using lab-scale testing of foam temperature profile and computational fluid dynamics (CFD) modeling of heat transfer in vapor channels. A heat transfer model using ANSYS Fluent® was developed to estimate the minimum HEX foam height that allows the vapors from LNG spillage to disperse rapidly. We also performed a sensitivity analysis on the effect of the vaporization rate, the diameter of the vapor channel, and the heat transfer coefficient on the required minimum height of the HEX foam. It can be observed that at least 1.2 m of HEX foam in height are needed to achieve risk mitigation in a typical situation. The simulation results can be used not only for understanding the heat transfer mechanisms when applying HEX foam but also for suggesting to the LNG facility operator how much HEX foam they need for effective risk mitigation under different conditions.  相似文献   

11.
Human errors during operation and the resulting increase in operational risk are major concerns for nuclear reactors, just as they are for all industries. Additionally, human reliability analysis together with probabilistic risk analysis is a key element in reducing operational risk. The purpose of this paper is to analyze human reliability using appropriate methods for the probabilistic representation and calculation of human error to be used alongside probabilistic risk analysis in order to reduce the operational risk of the reactor operation. We present a technique for human error rate prediction and standardized plant analysis risk. Human reliability methods have been utilized to quantify different categories of human errors, which have been applied extensively to nuclear power plants. The Tehran research reactor is selected here as a case study, and after consultation with reactor operators and engineers human errors have been identified and adequate performance shaping factors assigned in order to calculate accurate probabilities of human failure.  相似文献   

12.
Most petrochemical units run under extreme conditions, such as high temperatures, pressures, and speeds. Consequently, the equipment operators may commit errors because the startup and shutdown processes usually involve complicated operation steps; moreover, the operators may lack experience in handling abnormal situations. Misoperation can lead to accidents, including fires and explosions. Thus, risk analysis for process operations and the development of preventive measures have become an effective means of avoiding misoperation-related accidents. However, it is challenging to ensure the comprehensiveness of risk-analysis results. In this paper, we present a method for misoperation monitoring and early warning in the startup and shutdown processes of petrochemical units. The mechanisms of misoperation occurrence are summarized based on investigations of serious accidents in the recent past. Knowledge regarding the mechanisms of misoperation is crucial for the risk analysis of petrochemical units. The potential risk information, such as causes, adverse consequences, key monitoring parameters, and prevention control solutions, should be acquired and be employed to construct an early-warning knowledge database. Furthermore, misoperation judgment rules need to be formulated to identify misoperations. The data obtained from the monitoring module, misoperation judgment rules, and analysis results can aid in developing schemes to avoid possible abnormal situations. This paper reports a misoperation monitoring and early-warning system for a hydrogenation unit. As demonstrated, conducting risk analysis to determine the potential operational risks and formulating misoperation judgment rules to analyze the process data are essential for enabling early warning. The application of this method will contribute to operational guidance, economic loss reduction, and accident avoidance.  相似文献   

13.
A safety design approach for onshore modularized Liquefied Natural Gas (LNG) liquefaction plant is discussed in this paper. As onshore modularized LNG liquefaction plants have both onshore and offshore plants features, and the safety in design for the plant can only be achieved when the project environment and specific design features are properly understood, this paper identifies specific safety design features of each plant (onshore and offshore) and compares the typical “onshore” and “offshore” safety design approaches. Based on this comparison and consideration for modularization features, a safety design approach for onshore modularized LNG liquefaction plant is proposed.  相似文献   

14.
Blowout Preventer (BOP) has maintained its function as a safety barrier and the last line of defence against oil and gas spills since its development in the early 1900s. However, as drilling and exploration activities move further offshore, challenges pertaining to reliable operation of the subsea BOP systems continue to be a source of concern for stakeholders in the industry. In spite of recent advancements in reliability analysis of safety instrumented systems (SISs), the research on reliability assessment of BOP is still lacking in some regards. There are gaps in the literature with respect to the incorporation of preventive maintenance (PM) strategies as well as dynamic operating conditions into BOP reliability analysis. To address these gaps, this paper develops an advanced analysis method using stochastic Petri nets (SPN) to estimate the reliability of subsea BOP systems subject to condition-based maintenance (CBM) with different failure modes. The BOP system is divided into five subsystems which are connected in series with each other and categorised into degrading and binary units. The performance of the BOP system in terms of availability, reliability and mean-time-between failures (MTBF) is obtained and analysed. A sensitivity analysis is also performed to evaluate the effect of fault coverage factor and redundancy design on system performance. The results show that both the fault coverage factor and redundancy have significant impact on the BOP's reliability, availability and MTBF.  相似文献   

15.
Safety issue in a chemical plant is absolutely critical because loss of control can result in a catastrophic consequence which is not limited to the boundaries of the plant. Thus, a risk assessment system is required for (a) preventing accidents by anticipation, (b) surviving disturbances by recovery, and (c) handling disruptive events by adaptation. RE is a proactive approach claiming to achieve all these objectives. The present research tries to identify challenges in the procedure of building RE and its adaptive capacity in a chemical plant. Primary data were collected through on-site observations and interviewing personnel. The results indicated the main challenges could be classified into nine categories of: lack of explicit experience about RE, intangibility of RE level, choosing production over safety, lack of reporting systems, ‘religious beliefs’, out-of-date procedures and manuals, poor feedback loop, and economic problems. Finally, it is concluded that the management insight about safety in such systems should avoid hindsight bias and tend to create foresight. Changing this insight can lead to achieve high reliability and resilience in the plant.  相似文献   

16.
Oil transfer stations of PetroChina mostly scatter in Gobi, mountain areas or other sparsely populated areas, inconvenient transportation and absent professional engineers often delay the best time to repair the machines. Time-or interval-based maintenance (TBM) accounts for almost 100%, while, On-condition maintenance and other proactive maintenance are seldom adopted. TBM not only can't prevent happens of equipment fault but also cause the waste of the maintenance resource. In order to allocate maintenance resources reasonably, ascertain the minimum preventive maintenance requirement, ensure the reliability, availability and safety, this paper carries out a research on Risk and Condition Based Maintenance (RCBM) task optimization technology. Utilizing the internet of things (IOT), real-time database, signal-processing, Gray Neural Network, probability statistical analysis and service oriented architecture (SOA) technology, a Risk and Condition Based Indicator Decision-making System (RCBIDS) is built. RCBIDS integrates RCM, condition monitoring system (CMS), key performance management module, file management module, fault and defect management module, maintenance management module together, which aims to realize remote condition monitoring, maintenance technical support services (TSS), quantitative maintenance decision-making, and to ensure the Reliability, Availability, Maintainability and Safety (RAMS). The Predictive Maintenance Indicator model, reliability prediction model and Key Performance Indicator (KPI) model, which are embedded in the RCBIDS, are constructed separately. An engineering case shows that the risk and condition based maintenance task optimization technology can be used to optimize maintenance content and maintenance period, to minimize maintenance deficiencies and maintenance surplus, and to prolong the lifespan of equipment.  相似文献   

17.
低功率和停堆工况下人的错误操作引起的人误事件,是电站风险的重要根源之一,应对其进行认真分析并找出其发生的主要原因。笔者根据低功率和停堆工况下人误事件的特点,通过对5种人员可靠性分析方法的比较,选择了SPAR -H作为人误事件定量化分析的方法;以停堆工况下的抽水过多事件为实例,对该事件中包含的3个人误事件进行了定量化分析,给出了定量化分析结果;通过分析、比较及实例应用的结果表明,SPAR H作为低功率和停堆工况下HRA分析方法是合适的,符合该工况下人误事件的特点,同时SPAR H过程简单,有利于电站人员进行实际应用。  相似文献   

18.
Chemical accidents during process plant shutdowns may have severe consequences. In spite of this, the safety management systems in place in many companies still mainly cover the normal operations and little explicitly addresses the maintenance shutdown and plant start-up phases. A Finnish research project found that the level of safety during shutdowns is more closely related to the skills of key individuals at the plants and less due to the systematic safety management system of the companies. A guidebook on the topic in conjunction with tools to improve the situation were developed during the project in order to help the companies improve their documentation associated with chemical safety during shutdowns.  相似文献   

19.
以JL污水处理厂设备管理优化过程为例,充分吸取LCC,TPM中的先进思想,以设备运行可靠性及设备维护经济性为追求目标,建立了设备管理优化体系。流程体系上,通过建立作业指导文件,建立标准化维修程序,对于操作过程及时进行记录,建立可视化、可追溯的管理方法;指标体系上,根据设备重要性及运行状况,确定设备风险指数,分级管理;建立控制指标,并动态调整;管控体系上,建立设备“户口”,对设备的维护、保养、使用等信息进行全面登记;考核设备维护的全面性、及时性、可靠性、合规性;重视设备维护的预计与预警;技术体系上,通过设备监测仪器的使用,对设备运行状况定量化。通过不断推进设备预防性维护工作,设备完好率不断提升,仪表完好率从2016年的97.34%,96.55%水平,分别提升至99.08%,98.72%;维护费用也保持在较低水平,检修费与资产比例在实施的前两年分别降至1.49%,0.85%,实现了污水处理厂节能降耗及运行可靠性的强化。  相似文献   

20.
The safety issues of Liquefied Natural Gas (LNG) in production, storage, loading/unloading, transportation/shipping, and re-gasification have became a major concern, since an accident in the LNG industry would be very costly. Understanding the threat of LNG not only contributes to the process safety and reliability in the research and development (R&D) system, but improves the efficiency of loss prevention, fire protection and emergency responses. As of April 2019, in order to obtain the present status and trend of LNG safety research, basing 1122 documents of the Web of Science database about safety research of LNG as a data source, CiteSpace and VOS viewer were used for network knowledge map analysis. A comprehensive knowledge map of LNG safety field was obtained from several research aspects including scientific research power, research hot spots and trends, research knowledge base and frontier. According to the study results, the development of LNG safety research was divided into four stages from 1970s to 2019, China and South Korea made a lot of contributions, and the United States is the most influential. Among them, the research from 2005 to 2019 was the most representative. Current research results indicate that a combination of Formal Safety Assessment (FSA) methodology and Dynamic Procedure for Atypical Scenarios Identification (DyPASI) will fully identify risks; The PHAST and TerEx programs quickly define safety zones. Computational Fluid Dynamics (CFD) software package can provide accurate quantitative data for the study of LNG safety. Research on quantitative risk assessment (QRA) and LNG evaporated gas (BOG) has been a hot topic and trend in this field. The application of expansion foam in LNG accident mitigation covers most of the research content in this field, and the optimization of LNG liquefaction process has a great influence on this industry. As the international demand for LNG energy output increases, floating liquefied natural gas (FLNG) will have considerable development, and increasingly researchers attach vital importance to the safety of LNG offshore production integrated unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号