共查询到20条相似文献,搜索用时 34 毫秒
1.
Electrolytic reactive barriers (e(-) barriers) consist of closely spaced permeable electrodes installed across a groundwater contaminant plume in a permeable reactive barrier format. Application of sufficient potential to the electrodes results in sequential oxidation and reduction of the target contaminant. The objective of this study was to quantify the mass distribution of compounds produced during sequential electrolytic oxidation and reduction of ordinance related compounds (ORCs) in a laboratory analog to an e(-) barrier. In this study, a series of column tests were conducted using RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) and TNT (2,4,6-trinitrotoluene) as representative ORCs. The experimental setup consisted of a plexiglass column packed with quartz-feldspar sand to simulate aquifer conditions. A single set of porous electrodes consisting of expanded titanium-mixed metal oxide mesh was placed at the midpoint of the sand column as a one-dimensional analog to an e(-) barrier. Constant current of 20mA (variable voltage) was applied to the electrode set. Initial studies involved quantification of reaction products using unlabeled RDX and TNT. Approximately 70% of the influent concentration was transformed, in one pass, through sequential oxidation-reduction for both contaminants. Following the unlabeled studies, (14)C labeled RDX and TNT were introduced to determine the mass balance. An activity balance of up to 96% was achieved for both (14)C-RDX and (14)C-TNT. For both contaminants, approximately 21% of the influent activity was mineralized to (14)CO(2). The proportion of the initial activity in the dissolved fraction was different for the two test contaminants. Approximately 30% of the initial (14)C-RDX was recovered as unreacted in the dissolved phase. The balance of the (14)C-RDX was recovered as non-volatile, non-nitroso transformation products. None of the (14)C-RDX was sorbed to the column sand packing. For (14)C-TNT approximately 51% of the initial activity was recovered in the dissolved phase, the majority was unreacted TNT. The balance of the (14)C-TNT was either sorbed to the sand packing (approximately 24%) or dissolved/mineralized as unidentified ring cleavage products ( approximately 4%). 相似文献
2.
Xinbin Feng Hongmei Jiang Guangle Qiu Guanghui Li 《Environmental pollution (Barking, Essex : 1987)》2009,157(10):2594-2603
From October 2003 to September 2004, we conducted a detailed study on the mass balance of total mercury (THg) and methylmercury (MeHg) of Dongfeng (DF) and Wujiangdu (WJD) reservoirs, which were constructed in 1992 and 1979, respectively. Both reservoirs were net sinks for THg on an annual scale, absorbing 3319.5 g km−2 for DF Reservoir, and 489.2 g km−2 for WJD Reservoirs, respectively. However, both reservoirs were net sources of MeHg to the downstream ecosystems. DF Reservoir provided a source of 32.9 g MeHg km−2 yr−1, yielding 10.3% of the amount of MeHg that entered the reservoir, and WJD Reservoir provided 140.9 g MeHg km−2 yr−1, yielding 82.5% of MeHg inputs. Our results implied that water residence time is an important variable affecting Hg methylation rate in the reservoirs. Our study shows that building a series of reservoirs in line along a river changes the riverine system into a natural Hg methylation factory which markedly increases the %MeHg in the downstream reservoirs; in effect magnifying the MeHg buildup problem in reservoirs. 相似文献
3.
Dioxin mass balance in a municipal waste incinerator 总被引:8,自引:0,他引:8
A dioxin mass balance in an Spanish municipal waste incinerator (MWI) is presented. Input and output inventories from two sampling collection episodes including the analysis of PCDD/PCDF in urban solid waste (USW), stack gas emissions, fly ash and slag are reported. In one collection the levels of USW were around 8 pg I-TEQ/g and non-thermal destruction was observed overall. In the other collection the levels of USW were higher (around 64 pg I-TEQ/g) and the dioxin balance revealed a thermal destruction. Analysis of the different waste materials (textile, organic, plastic, wood and paper) was performed separately and the textile samples presented the highest levels. 相似文献
4.
Completely autotrophic nitrogen-removal over nitrite in lab-scale constructed wetlands: evidence from a mass balance study 总被引:4,自引:0,他引:4
A mass-balance study was carried out to investigate the transformation of nitrogenous pollutants in vertical flow wetlands. Landfill leachate containing low BOD, but a high concentration of ammonia, was treated in four wetland columns under predominately aerobic conditions. Influent total nitrogen in the leachate consisted mainly of ammonia with less than 1% nitrate and nitrite, and negligible organic nitrogen. There was a substantial loss of total nitrogen (52%) in one column, whereas other columns exhibited zero to minor losses (<12%). Net nitrogen loss under study conditions was unexpected. Correlations between pH, nitrite and nitrate concentrations indicated the removal of nitrogen under study conditions did not follow the conventional, simplistic, chemistry of autotrophic nitrification. Through mass-balance analysis, it was found that CANON (Completely Autotrophic Nitrogen-removal Over Nitrite) was responsible for the transformation of nitrogen into gaseous form, thereby causing the loss of nitrogen mass. The results show that CANON can be native to aerobic engineered wetland systems treating wastewater that contains high ammonia and low BOD. 相似文献
5.
A field study on phytoremediation of dredged sediment contaminated by heavy metals and nutrients: the impacts of sediment aeration 总被引:1,自引:0,他引:1
Juan Wu Lihua Yang Fei Zhong Shuiping Cheng 《Environmental science and pollution research international》2014,21(23):13452-13460
Compared to traditional chemical or physical treatments, phytoremediation has proved to be a cost-effective and environmentally sound alternative for remediation of contaminated dredged sediment. A field study was conducted in a sediment disposal site predominantly colonized by Typha angustifolia under different sediment moisture conditions to estimate the phytoremediation effects of dredged sediment. The moisture content was 37.30 % and 48.27 % in aerated and waterlogged sediment, respectively. Total nitrogen (TN) content was higher in the waterlogged sediment than in the aerated sediment. The total Cd contents were lower in aerated sediment, which was mainly resulted from the lower exchangeable fraction of Cd. The bioaccumulation of P, Cu and Pb in T. angustifolia was promoted by waterlogging, and the belowground tissue concentrations and accumulation factors (AFs) of Cu were higher than that of other metals, which can be explained by that Cu is an essential micronutrient for plants. Consistent with many previous studies, T. angustifolia showed higher metal levels in roots than in above-ground tissues at both the sediment conditions. Due to the improved biomass produced in the aerated sediment, the removals of nutrients and the metals by plant harvest were higher from aerated sediment than from waterlogged sediment. It was indicated that maintaining the dredged sediment aerated can avoid release risk and plant uptake of metals, while the opposite management option can promote phytoextraction of these contaminants. 相似文献
6.
Dušan Žagar Nataša Sirnik Matjaž Četina Milena Horvat Jože Kotnik Nives Ogrinc Ian M. Hedgecock Sergio Cinnirella Francesco De Simone Christian N. Gencarelli Nicola Pirrone 《Environmental science and pollution research international》2014,21(6):4081-4094
Mass balance of contaminants can provide useful information on the processes that influence their concentrations in various environmental compartments. The most important sources, sinks and the equilibrium or non-equilibrium state of the contaminant in individual environmental compartments can also be identified. Using the latest mercury speciation data, the results of numerical models and the results of recent studies on mercury transport and transformation processes in the marine environment, we have re-evaluated the total mercury (HgT) mass balance in the Mediterranean Sea. New calculations have been performed employing three distinct marine layers: the surface layer, the thermocline and the deep sea. New transport mechanisms, deep water formation and density-driven sinking and upwelling, were included in the mass balance calculations. The most recent data have even enabled the calculation of an approximate methylmercury (MeHg) mass balance. HgT is well balanced in the entire Mediterranean, and the discrepancies between inputs and outputs in individual layers do not exceed 20 %. The MeHg balance shows larger discrepancies between gains and losses due to measurement uncertainties and gaps in our knowledge of Hg species transformation processes. Nonetheless, the main sources and sinks of HgT (deposition and evasion) and MeHg (fluxes from sediment, outflow through the Gibraltar Strait) are in accordance with previous studies on mercury in the Mediterranean Basin. Mercury in the Mediterranean fish harvest is the second largest MeHg sink; about 300 kg of this toxic substance is consumed annually with sea food. 相似文献
7.
Operator-splitting procedures for reactive transport and comparison of mass balance errors 总被引:6,自引:0,他引:6
Operator-splitting (OS) techniques are very attractive for numerical modelling of reactive transport, but they induce some errors. Considering reactive mass transport with reversible and irreversible reactions governed by a first-order rate law, we develop analytical solutions of the mass balance for the following operator-splitting schemes: standard sequential non-iterative (SNI), Strang-splitting SNI, standard sequential iterative (SI), extrapolating SI, and symmetric SI approaches. From these analytical solutions, the operator-splitting methods are compared with respect to mass balance errors and convergence rates independently of the techniques used for solving each operator. Dimensionless times, NOS, are defined. They control mass balance errors and convergence rates. The following order in terms of decreasing efficiency is proposed: symmetric SI, Strang-splitting SNI, standard SNI, extrapolating SI and standard SI schemes. The symmetric SI scheme does not induce any operator-splitting errors, the Strang-splitting SNI appears to be O(N2OS) accurate, and the other schemes are first-order accurate. 相似文献
8.
Herve Plaisance Pierre Mocho Nicolas Sauvat Jane Vignau-Laulhere Katarzyna Raulin Valerie Desauziers 《Environmental science and pollution research international》2017,24(31):24156-24166
Basing on the material emission data obtained in a test chamber, chemical mass balance (CMB) was used to assess the source apportionment of volatile organic compound (VOC) concentrations in three newly built timber frame houses. CMB has been proven to be able to discriminate the source contributions for two contrasted environmental conditions (with and without ventilation). The shutdown of the ventilation system caused an increase in the VOC concentrations due to the increased contribution of indoor surface materials like the door material and furniture explaining together over 65% of total VOCs. While the increase in formaldehyde concentration is mainly due to furniture (contribution of 70%), the increase in α-pinene concentration is almost exclusively attributable to the emission of door material (up to 84%). The apportionment of VOC source contributions appears as highly dependent on the position of source materials in the building (surface materials or internal materials) and the ventilation conditions explaining that the concentrations of compounds after the shutdown of ventilation system do not increase in equivalent proportion. Knowledge of indoor sources and its contributions in real conditions may help in the selection of materials and in the improvement of construction operations to reduce the indoor air pollution. 相似文献
9.
The problem of large-scale contamination of groundwater by relatively low levels of organic contaminants is most frequently addressed by extracting and treating the impacted groundwater. This pump-and-treat strategy is often unsuccessful because of difficulties encountered in recovering the contaminants from relatively immobile zones within the porous medium. These zones can exist at the particle scale, as intraparticle or intra-aggregate porosity, and at the larger scales, as low-permeability layers or lenses interspersed in substantially more permeable layers. This work focuses on achieving an efficient numerical solution to a system of groundwater flow and contaminant transport equations that sufficiently captures the dynamics of slow desorption in a two-dimensional porous medium. The conceptual model and governing equations are presented. A numerical method for solving the governing equations, the upstream-weighted, multiple cell balance (UMCB) method, is proposed. The UMCB algorithm has been employed previously for the case of solute transport with equilibrium sorption, and is extended here to the nonequilibrium case. The approach employs a finite-element basis function and a finite-difference local mass balance, and is designed to reduce computational and storage requirements, while minimizing the mass balance error. The computational grid is formed by division of the flow domain into triangular elements. An invented node at the center of each element divides the element into three subtriangular regions. By linking the center of each triangular element and the mid-point of each elemental side, a multiangular region, referred to as an exclusive subdomain, is defined. The discretized system of governing equations is derived from the integral form that describes the mass balance in the exclusive subdomain of each node. The paper details the application of the numerical method, and demonstrates that the method is reasonably accurate and computationally efficient for a two-dimensional domain subject to nonequilibrium sorption. 相似文献
10.
Climate forcing is forecasted to influence the Adriatic Sea region in a variety of ways, including increasing temperature, and affecting wind speeds, marine currents, precipitation and water salinity. The Adriatic Sea is intensively developed with agriculture, industry, and port activities that introduce pollutants to the environment. Here, we developed and applied a Level III fugacity model for the Adriatic Sea to estimate the current mass balance of polychlorinated biphenyls in the Sea, and to examine the effects of a climate change scenario on the distribution of these pollutants. The model’s performance was evaluated for three PCB congeners against measured concentrations in the region using environmental parameters estimated from the 20th century climate scenario described in the Special Report on Emission Scenarios (SRES) by the IPCC, and using Monte Carlo uncertainty analysis. We find that modeled fugacities of PCBs in air, water and sediment of the Adriatic are in good agreement with observations. The model indicates that PCBs in the Adriatic Sea are closely coupled with the atmosphere, which acts as a net source to the water column. We used model experiments to assess the influence of changes in temperature, wind speed, precipitation, marine currents, particulate organic carbon and air inflow concentrations forecast in the IPCC A1B climate change scenario on the mass balance of PCBs in the Sea. Assuming an identical PCBs’ emission profile (e.g. use pattern, treatment/disposal of stockpiles, mode of entry), modeled fugacities of PCBs in the Adriatic Sea under the A1B climate scenario are higher because higher temperatures reduce the fugacity capacity of air, water and sediments, and because diffusive sources to the air are stronger. 相似文献
11.
12.
Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain 总被引:72,自引:0,他引:72
Ju XT Kou CL Zhang FS Christie P 《Environmental pollution (Barking, Essex : 1987)》2006,143(1):117-125
The annual nitrogen (N) budget and groundwater nitrate-N concentrations were studied in the field in three major intensive cropping systems in Shandong province, north China. In the greenhouse vegetable systems the annual N inputs from fertilizers, manures and irrigation water were 1358, 1881 and 402 kg N ha(-1) on average, representing 2.5, 37.5 and 83.8 times the corresponding values in wheat (Triticum aestivum L.)-maize (Zea mays L.) rotations and 2.1, 10.4 and 68.2 times the values in apple (Malus pumila Mill.) orchards. The N surplus values were 349, 3327 and 746 kg N ha(-1), with residual soil nitrate-N after harvest amounting to 221-275, 1173 and 613 kg N ha(-1) in the top 90 cm of the soil profile and 213-242, 1032 and 976 kg N ha(-1) at 90-180 cm depth in wheat-maize, greenhouse vegetable and orchard systems, respectively. Nitrate leaching was evident in all three cropping systems and the groundwater in shallow wells (<15 m depth) was heavily contaminated in the greenhouse vegetable production area, where total N inputs were much higher than crop requirements and the excessive fertilizer N inputs were only about 40% of total N inputs. 相似文献
13.
Enhanced phytoremediation of arsenic contaminated land 总被引:2,自引:0,他引:2
In an attempt to clean up arsenic (As) contaminated soil, the effects of phosphorus (P) fertilizer and rhizosphere microbes on arsenic accumulation by the silverback fern, Pityrogramma calomelanos, were investigated in both greenhouse and field experiments. Field experiments were conducted in Ron Phibun District, an As-contaminated area in Thailand. Soil (136-269 microg As g(-1)) was collected there and used in the greenhouse experiment. Rhizosphere microbes (bacteria and fungi) were isolated from roots of P. calomelanos growing in Ron Phibun District. The results showed that P-fertilizer significantly increased plant biomass and As accumulation of the experimental P. calomelanos. Rhizobacteria increased significantly the biomass and As content of the test plants. Thus, P-fertilizer and rhizosphere bacteria enhanced As-phytoextraction. In contrast, rhizofungi reduced significantly As concentration in plants but increased plant biomass. Therefore, rhizosphere fungi exerted their effects on phytostabilization. 相似文献
14.
Coleman JO Frova C Schroder P Tissut M 《Environmental science and pollution research international》2002,9(1):18-28
Weed control by herbicides has helped us to create the green revolution and to provide food for at least the majority of human beings living today. However, some herbicides remain in the environment and pose an ecological problem. The present review describes the properties and fate of four representative herbicides known to be presistent in ecosystems. Metabolic networks are depicted and it is concluded that removal of these compounds by the ecologically friendly technique of phytoremediation is possible. The largest problem is seen in the uptake of the compounds into suitable plants and the time needed for such an approach. 相似文献
15.
A comparison of phytoremediation capability of selected plant species for given trace elements 总被引:3,自引:0,他引:3
Fischerová Z Tlustos P Jirina Száková Kornelie Sichorová 《Environmental pollution (Barking, Essex : 1987)》2006,144(1):93-100
In our experiment, As, Cd, Pb, and Zn remediation possibilities on medium contaminated soil were investigated. Seven plant species with a different trace element accumulation capacity and remediation potential were compared. We found good accumulation capabilities and remediation effectiveness of Salix dasyclados similar to studied hyperaccumulators (Arabidopsis halleri and Thlaspi caerulescens). We have noticed better remediation capability in willow compared to poplar for most of the elements considered in this experiment. On the contrary, poplar species were able to remove a larger portion of Pb as opposed to other species. Nevertheless, the removed volume was very small. The elements found in plant biomass depend substantially on the availability of these elements in the soil. Different element concentrations were determined in natural soil solution and by inorganic salt solution extraction (0.01 molL(-1) CaCl(2)). Extracted content almost exceeded the element concentration in the soil solution. Element concentrations in soil solution were not significantly affected by sampling time. 相似文献
16.
Andrew Keats Man-Ting Cheng Eugene Yee Fue-Sang Lien 《Atmospheric environment (Oxford, England : 1994)》2009,43(3):510-519
The chemical mass balance (CMB) receptor model is commonly used in source apportionment studies as a means for attributing measured airborne particulate matter (PM) to its constituent emission sources. Traditionally, error terms (e.g., measurement and source profile uncertainty) associated with the model have been treated in an additive sense. In this work, however, arguments are made for the assumption of multiplicative errors, and the effects of this assumption are realized in a Bayesian probabilistic formulation which incorporates a ‘modified’ receptor model. One practical, beneficial effect of the multiplicative error assumption is that it automatically precludes the possibility of negative source contributions, without requiring additional constraints on the problem. The present Bayesian treatment further differs from traditional approaches in that the source profiles are inferred alongside the source contributions. Existing knowledge regarding the source profiles is incorporated as prior information to be updated through the Bayesian inferential scheme. Hundreds of parameters are therefore present in the expression for the joint probability of the source contributions and profiles (the posterior probability density function, or PDF), whose domain is explored efficiently using the Hamiltonian Markov chain Monte Carlo method. The overall methodology is evaluated and results compared to the US Environmental Protection Agency's standard CMB model using a test case based on PM data from Fresno, California. 相似文献
17.
18.
Woody biomass phytoremediation of contaminated brownfield land 总被引:4,自引:0,他引:4
French CJ Dickinson NM Putwain PD 《Environmental pollution (Barking, Essex : 1987)》2006,141(3):387-395
Economic and environmental regeneration of post-industrial landscapes frequently involves some element of re-afforestation or tree planting. We report field trials that evaluate whether woody biomass production is compatible with managing residual trace element contamination in brownfield soils. Large-scale mapping of contamination showed a heterogenous dispersion of metals and arsenic, and highly localised within-site hotspots. Yields of Salix, Populus and Alnus were economically viable, showing that short-rotation coppice has a potentially valuable role in community forestry. Mass balance modelling demonstrated that phytoextraction potentially could reduce contamination hotspots of more mobile elements (Cd and Zn) within a 25-30-year life cycle of the crops. Cd and Zn in stems and foliage of Salix were 4-13 times higher than EDTA-extractable soil concentrations. Lability of other trace elements (As, Pb, Cu, Ni) was not increased 3 years after planting the coppice; woody biomass may provide an effective reduction of exposure (phyto-stabilization) to these less mobile contaminants. 相似文献
19.
Dhingra Rajveer S. Shah Manan 《Environmental science and pollution research international》2021,28(43):60329-60345
Environmental Science and Pollution Research - Groundwater is a key resource in the world. Its importance is often undermined, despite the various applications which include irrigation, drinking,... 相似文献
20.
A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils 总被引:10,自引:0,他引:10
Huang XD El-Alawi Y Penrose DM Glick BR Greenberg BM 《Environmental pollution (Barking, Essex : 1987)》2004,130(3):465-476
To improve phytoremediation processes, multiple techniques that comprise different aspects of contaminant removal from soils have been combined. Using creosote as a test contaminant, a multi-process phytoremediation system composed of physical (volatilization), photochemical (photooxidation) and microbial remediation, and phytoremediation (plant-assisted remediation) processes was developed. The techniques applied to realize these processes were land-farming (aeration and light exposure), introduction of contaminant degrading bacteria, plant growth promoting rhizobacteria (PGPR), and plant growth of contaminant-tolerant tall fescue (Festuca arundinacea). Over a 4-month period, the average efficiency of removal of 16 priority PAHs by the multi-process remediation system was twice that of land-farming, 50% more than bioremediation alone, and 45% more than phytoremediation by itself. Importantly, the multi-process system was capable of removing most of the highly hydrophobic, soil-bound PAHs from soil. The key elements for successful phytoremediation were the use of plant species that have the ability to proliferate in the presence of high levels of contaminants and strains of PGPR that increase plant tolerance to contaminants and accelerate plant growth in heavily contaminated soils. The synergistic use of these approaches resulted in rapid and massive biomass accumulation of plant tissue in contaminated soil, putatively providing more active metabolic processes, leading to more rapid and more complete removal of PAHs. 相似文献