首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the ability of nickel-based catalysts to degrade explosives compounds in aqueous solution. Several nickel catalysts completely degraded the explosives, although rates varied. Nearly all of the organic explosive compounds tested, including 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), were rapidly degraded to below detection limits by a powdered nickel on an alumina-silicate support (Aldrich nickel catalyst). Perchlorate degradation was minimal (<25%). Degradation of TNT by Aldrich nickel catalyst resulted in apparent first-order kinetics. Significant gaseous 14C was released and collected in an alkaline solution (most likely carbon dioxide) from [14C]RDX and [14C]HMX, indicating heterocyclic ring cleavage. Significant gaseous 14C was not produced from [14C]TNT, but spectrophotometric evidence indicated loss of aromaticity. Degradation occurred in low ionic strength solutions, groundwater, and from pH 3 to pH 9. Degradation of TNT, RDX, and HMX was maintained in flow-through columns of Aldrich nickel catalyst mixed with sand down to a hydraulic retention time of 4h. These data indicate that nickel-based catalysts may be an effective means for remediation of energetics-contaminated groundwater.  相似文献   

2.
Halide salts accelerate degradation of high explosives by zerovalent iron   总被引:1,自引:0,他引:1  
Zerovalent iron (Fe(0), ZVI) has drawn great interest as an inexpensive and effective material to promote the degradation of environmental contaminants. A focus of ZVI research is to increase degradation kinetics and overcome passivation for long-term remediation. Halide ions promote corrosion, which can increase and sustain ZVI reactivity. Adding chloride or bromide salts with Fe(0) (1% w/v) greatly enhanced TNT, RDX, and HMX degradation rates in aqueous solution. Adding Cl or Br salts after 24h also restored ZVI reactivity, resulting in complete degradation within 8h. These observations may be attributed to removal of the passivating oxide layer and pitting corrosion of the iron. While the relative increase in degradation rate by Cl(-) and Br(-) was similar, TNT degraded faster than RDX and HMX. HMX was most difficult to remove using ZVI alone but ZVI remained effective after five HMX reseeding cycles when Br(-) was present in solution.  相似文献   

3.
Adrian NR  Arnett CM 《Chemosphere》2007,66(10):1849-1856
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 2,4,6-trinitrotoluene (TNT) are explosives that are frequently found as environmental contaminants on military installations. Hydrogen has been shown to support the anaerobic transformation of these explosives. We investigated ethanol and propylene glycol as electron donors for providing syntrophically produced H2 for stimulating the anaerobic biodegradation of explosives in contaminated soil. The study was conducted using anoxic microcosms constructed with slurries of the contaminated soil and groundwater. The addition of 5mM ethanol and propylene glycol enhanced the biodegradation of RDX and HMX relative to the control bottles. Ethanol was depleted within about 20 days, resulting in the transient formation of hydrogen, acetate, and methane. The hydrogen headspace concentration increased from 8 ppm to 1838 ppm before decreasing to background concentrations. Propylene glycol was completely degraded after 15 days, forming hydrogen, propionate, and acetate as end-products. The hydrogen headspace concentrations increased from 56 ppm to 628 ppm before decreasing to background concentrations. No methane formation was observed during the incubation period of 48 days. Our findings indicate the addition of ethanol and propylene to the aquifer slurries increased the hydrogen concentrations and enhanced the biotransformation of RDX and HMX in the explosive-contaminated soil.  相似文献   

4.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a potential human carcinogen, and its contamination of subsurface environments is a significant threat to public health. This study investigated abiotic and biological degradation of RDX in contaminated aquifer material. Anoxic batch systems were started with and without pre-aeration of aquifer material to distinguish initial biological RDX reduction from abiotic RDX reduction. Aerating the sediment eliminated chemical reductants in the native aquifer sediment, primarily Fe(II) sorbed to mineral surfaces. RDX (50 μM) was completely reduced and transformed to ring cleavage products when excess concentrations (2 mM) of acetate or lactate were provided as the electron donor for aerated sediment. RDX was reduced concurrently with Fe(III) when acetate was provided, while RDX, Fe(III), and sulfate were reduced simultaneously with lactate amendment. Betaproteobacteria were the dominant microorganisms associated with RDX and Fe(III)/sulfate reduction. In particular, Rhodoferax spp. increased from 21% to 35% and from 28% to 60% after biostimulation by acetate and lactate, respectively. Rarefaction analyses demonstrated that microbial diversity decreased in electron-donor-amended systems with active RDX degradation. Although significant amounts of Fe(III) and/or sulfate were reduced after biostimulation, solid-phase reactive minerals such as magnetite or ferrous sulfides were not observed, suggesting that RDX reduction in the aquifer sediment is due to Fe(II) adsorbed to solid surfaces as a result of Fe(III)-reducing microbial activity. These results suggest that both biotic and abiotic processes play an important role in RDX reduction under in situ conditions.  相似文献   

5.
The effect of ammunition-like compounds and armament waste on the mortality and reproduction of terrestrial invertebrates was assayed by using two biotests: the enchytraeid-biotest withEnchytraeus crypticus and the collembola-biotest withFolsomia Candida. Toxicity was investigated by using standard soil (Lufa 2.2) spiked with 2,4,6-trinitrotoluene (TNT), hexahydro-l,3,5-trinitro-l,3,5-triazine (hexogen, RDX), octahydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine (octogen, HMX) and 2,4,6-triaminotoluene (TAT). Ecotoxicity was investigated with ammunition-contaminated soil material from the former ammunition plant “Tanne” at Clausthal-Zellerfeld (CTNTla) and the Brandplatz (incineration site) in Torgau-Elsnig (TETNT1a), Germany. TNT increased mortality and reduced reproduction of both test organisms corresponding to the concentrations used, whereas hexogen, octogen and TAT had no effect in the tested concentrations (1000-2000 mg/kg). From the two soil materials, TETNT1a was much more toxic than CTNT1a. The LC50(7d) in the enchytraeid-biotest was 570 mg TNT/kg and the EC50(28d) 369 mg TNT/kg soil material (dw). In the collembola-biotest the LC50(7d) was 185 mg TNT/kg and the EC50(28d) 110 mg TNT/kg soil matter (dw).  相似文献   

6.
Ochsenbein U  Zeh M  Berset JD 《Chemosphere》2008,72(6):974-980
Off-line solid phase extraction and direct injection analysis were evaluated for the determination of traces of explosives such as TNT and its mono and diamino metabolites, HMX, RDX, nitroglycerin and PETN in lake water and tributaries applying liquid chromatography-electrospray tandem mass spectrometry. Improved chromatographic separation was achieved on a phenyl based stationary phase with baseline resolution of the mono- and diamino metabolites of TNT. Identification and quantification of the target compounds was performed by multiple reaction monitoring applying electrospray ionization in either the positive mode for the diaminometabolites of TNT or the negative mode for all other compounds. An extensive method validation was performed and limits of quantification were obtained for the explosives in preconcentrated lake water samples from 0.03 to 1 ng l(-1) and 0.1 to 5 ng l(-1) in river water. Direct injection analysis revealed comparable results to preconcentrated water samples for the most persistent explosives. Analysis of lake water samples collected at different depths showed the presence of HMX, RDX and PETN at concentrations from 0.1 to 0.4 ng l(-1). The analysis of main tributaries revealed concentrations from 0.1 to 0.9 ng l(-1) of the same compounds. They seem to be responsible for the contamination of the explosives in the lakes.  相似文献   

7.
Solid phase high explosive (HE) residues from munitions detonation may be a persistent source of soil and groundwater contamination at military training ranges. Saturated soil column tests were conducted to observe the dissolution behavior of individual components (RDX, HMX, and TNT) from two HE formulations (Comp B and C4). HE particles dissolved readily, with higher velocities yielding higher dissolution rates, higher mass transfer coefficients, and lower effluent concentrations. Effluent concentrations were below solubility limits for all components at superficial velocities of 10-50 cm day(-1). Under continuous flow at 50 cm day(-1), RDX dissolution rates from Comp B and C4 were 34.6 and 97.6 microg h(-1) cm(-2) (based on initial RDX surface area), respectively, significantly lower than previously reported dissolution rates. Cycling between flow and no-flow conditions had a small effect on the dissolution rates and effluent concentrations; however, TNT dissolution from Comp B was enhanced under intermittent-flow conditions. A model that includes advection, dispersion, and film transfer resistance was developed to estimate the steady-state effluent concentrations.  相似文献   

8.
Phytoremediation is of great interest to remediate soil contaminated with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT). The ability of 4 agronomic plants (maize, soybean, wheat and rice) to take up these explosives and their fate in plants were investigated. Plants were grown for 42 days on soil contaminated with [(14)C]RDX or [(14)C]TNT. Then, each part was analyzed for its radioactivity content and the percentage of bound and soluble residues was determined following extractions. Extracts were analyzed by radio-HPLC. More than 80% of uptaken RDX was translocated to aerial tissues, up to 64.5 mgg(-1) of RDX. By contrast, TNT was little translocated to leaves since less than 25% of uptaken TNT was accumulated in aerial parts. Concentrations of TNT residues were 20 times lower than for RDX uptake. TNT was highly metabolized to bound residues (more than 50% of radioactivity) whereas RDX was mainly found in its parent form in aerial parts.  相似文献   

9.
Contaminated water and soil at active or abandoned munitions plants is a serious problem since these compounds pose risks to human health and can be toxic to aquatic and terrestrial life. Our objective was to determine if zero-valent iron (Fe(0)) could be used to promote remediation of water and soil contaminated with 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). As little as 1% Fe(0) (w/v) removed 70 mg TNT litre(-1) from aqueous solution within 8 h and removed 32 mg RDX litre(-1) within 96 h. Treating slurries (1:5 soil:water) of highly contaminated soil (5200 mg TNT and 6400 mg RDX kg(-1) soil) from the former Nebraska Ordnance Plant (NOP) with 10% Fe(0) (w/w soil) reduced CH(3)CN-extractable TNT and RDX concentrations below USEPA remediation goals (17.2 mg TNT and 5.8 mg RDX kg(-1)). Sequential treatment of a TNT-contaminated solution (70 mg TNT litre(-1) spiked with (14)C-TNT) with Fe(0) (5% w/v) followed by H(2)O(2) (1% v/v) completely destroyed TNT and removed about 94% of the (14)C from solution, 48% of which was mineralized to (14)CO(2) within 8 h. Fe(0)-treated TNT also was more susceptible to biological mineralization. Our observations indicate that Fe(0) alone, Fe(0) followed by H(2)O(2), or Fe(0) in combination with biotic treatment can be used for effective remediation of munitions-contaminated water and soil.  相似文献   

10.
Background, Aim and Scope The polynitramines, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), are important military explosives and regulated toxic hazardous compounds. Production, testing and use of the compounds has resulted in numerous acres of contaminated soils and groundwater near many munitions facilities. Economical and efficient methods for treatment of wastewater and cleanup of soils or groundwater containing RDX and HMX are needed. This study focuses on the photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide (nano-TiO2) under simulated sunlight, whose intensity and wavelength are similar to that of the real sunlight in Xi'an at noon. The objective is to determine the potential for RDX destruction with nano-TiO2 in aqueous solution. Materials and Methods: An activated carbon fiber (ACF) cloth-loaded with nano-TiO2 was put into the RDX containing solution, and the concentration of RDX was measured (by HPLC–UV) at regular time intervals under simulated sunlight. Results: The RDX degradation percentage of the photocatalytic process is higher than that of Fenton oxidation before 80 min, equivalent after 80 min, and it reaches 95% or above after 120 min. The nano-TiO2 catalyst can be used repeatedly. Discussion: The photocatalytic degradation kinetics of RDX under simulated sunlight can be described by a first-order reaction kinetics equation. The possible degradation mechanism of RDX was presented and the degradation performance was compared with that of biological method. Conclusions: It was demonstrated that the degradation of RDX wastewater is very effective with nano-TiO2 as the photocatalytic catalyst under simulated sunlight. The efficiency of the nano-TiO2 catalyst for RDX degradation under simulated sunlight is nearly identical to that of Fenton oxidation. Recommendations and Perspectives: To date, a number of catalysts show poor absorption and utilization of sunlight, and still need ultraviolet light irradiation during wastewater degradation. The nano-TiO2 used in the described experiments features very good degradation of RDX under simulated sunlight, and the manufacturing costs are rather low (around 10 Euro/m2). Moreover, the degradation efficiency is higher compared to that of the biological method. This method exhibits great potential for practical applications owing to its easiness and low cost. If it can be applied extensively, the efficiency of wastewater treatment will be enhanced greatly.  相似文献   

11.
The sublethal and chronic effects of the environmental contaminant and explosive octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in artificial soil were assessed using the earthworm (Eisenia andrei). Based on various reproduction parameters (total and hatched number of cocoons, number of juveniles and their biomass), fecundity was reduced at the different concentrations of HMX tested (from 280.0 +/- 12.3 to 2502.9 +/- 230.0 mg kg-1 dry soil) in spiked artificial soil (LOEC: 280.0 +/- 12.3 mg kg-1 dry soil). The growth of adult E. andrei was also reduced at the different concentrations tested, though no mortality occurred, even at the highest tested concentrations. The number of juveniles produced was correlated with the number of total and hatched cocoons, and the biomass of juveniles was correlated with the number of cocoons. Pooled results of these and earlier studies on explosives (TNT, RDX) using the E. andrei reproduction test confirm that effects of HMX on cocoon production are indicative of some reproductive consequences (number of juvenile and their biomass), whereas adult growth, in general, does not correlate strongly with change in reproduction capacity.  相似文献   

12.
We investigated the acute impact of trinitrotoluene (TNT) contamination of soil on the aerobic bacterial community composition and function. The contamination of the environment with explosive residues presents a serious problem at sites across the world, with the highly toxic compound TNT being the most widespread explosive contaminant. We investigated the acute impact of trinitrotoluene (TNT) contamination of soil on the aerobic bacterial community composition and function. Soil microcosms were amended with a range of concentrations of TNT for 30 days. A polyphasic approach encompassing culture-independent molecular analysis by DGGE, community-level physiological profiling (CLPP) and cell enumeration revealed that the amendment of soils with TNT resulted in a shift from slower growing k-strategists towards faster growing r-strategists. Pseudomonads became prevalent at high concentrations of TNT. Pollution induced community tolerance (PICT) was observed as TNT concentrations increased. Chemical analyses revealed that TNT was reduced to its amino derivatives, products of reductive microbial transformation. The transformation to amino derivatives decreased at high concentrations of TNT, indicative of inhibition of microbial TNT transformation.  相似文献   

13.
Best EP  Geter KN  Tatem HE  Lane BK 《Chemosphere》2006,62(4):616-625
The objectives of this study were to provide data that can be used to predict exposure-based effects of RDX in aged soil on multiple endpoint organisms representing two trophic levels. These data can be used for defining criteria or reference values for environmental management and conducting specific risk assessment. Dose-response experiments formed the basis for the evaluation of toxic effects and transfer of contaminants from soil into two trophic levels. Long-term exposure tests were conducted to evaluate chronic, sublethal, toxicity and transfer of aged soil-based explosives, with RDX as main contaminant. In these tests, plants were exposed for 55 days in the greenhouse, biomass was determined and residues of explosives parent compounds and RDX metabolites were analyzed using HPLC techniques. Worms were exposed for 28 days (Eisenia fetida) and 42 days (Enchytraeus crypticus) in the laboratory, biomass and number were determined, and tissues were analyzed for explosives compounds. The plants tolerated concentrations up to 1,540 mg RDX kg(-1) soil-DW. Biomass of Lolium perenne was not significantly related to soil-RDX concentration, while biomass of Medicago sativa significantly increased. No screening benchmark for RDX in soil for plants was calculated, since concentrations up to 1,540 mg kg(-1) soil failed to reduce biomass by 20% as required for a LOEC. RDX, RDX-metabolite MNX, and accompanying HMX concentrations in plants were significantly related to concentrations in soil after 55 days of exposure (RDX: R(2) = 0.77-0.89; MNX R(2) = 0.53-0.77; HMX: R(2) = 0.67-0.71). The average bioconcentration factors (BCF) were for RDX 17 in L. perenne and 37 in M. sativa, and for HMX 2 in L. perenne and 44 in M. sativa. The worms also tolerated concentrations up to 1,540 mg RDX kg(-1) soil-DW. Biomass of E. fetida adults decreased with soil-RDX concentration, and a LOEC of 1,253 mg kg(-1) soil-DW was estimated. RDX concentrations in E. fetida were significantly related to concentrations in soil after 28-day exposure (R(2) = 0.88). The average BCF in E. fetida for RDX was 1. Because in response to exposure to RDX-contaminated soil the RDX concentrations in plants increased initially and decreased subsequently, while those in worms increased continuously, RDX in worm tissues may accumulate to higher concentrations than in plant tissues, regardless of the low average BCF for worms.  相似文献   

14.
2,4,6-Trinitrotoluene (TNT) is toxic to soil invertebrates, but little is known about its toxicokinetic behavior in soil. Tissue residue analysis was used to evaluate whether the presence of TNT and its reduced metabolites in soil invertebrates was due to uptake of these compounds from the soil into the organism, or due to microbial transformation of TNT associated with the organism followed by uptake. Adult white potworms (Enchytraeus albidus) were exposed to non-lethal concentrations of TNT in amended artificial soil for 21 d, or to TNT in solution for 20 h. Soil exposure studies confirmed earlier reports that TNT was transformed in enchytraeids in vivo to 2- and 4-aminodinitrotoluenes. However, enchytraeid exposure to TNT in solution led to the additional presence of 2,4-diaminonitrotoluene as well as 2- and 4- hydroxyamino-dinitrotoluenes and azoxy-compounds, suggesting that TNT can be metabolized in vivo in the absence of soil. Incubation of unexposed enchytraeid homogenates with TNT led to a protein-dependent appearance of these metabolites in vitro after > or =16 h incubation. Cellular fractionation studies indicated that most of this activity resided in the 8000 x g pellet, and was completely inhibited by broad-spectrum antibiotics. These studies demonstrate that enchytraeids can transform TNT in vivo and in vitro, at least in part, by bacteria associated with the host organism.  相似文献   

15.
Hexanitrohexaazaisowurtzitane (CL-20) is an emerging explosive that may replace the currently used explosives such as RDX and HMX, but little is known about its fate in soil. The present study was conducted to determine degradation products of CL-20 in two sandy soils under abiotic and biotic anaerobic conditions. Biotic degradation was prevalent in the slightly acidic VT soil, which contained a greater organic C content, while the slightly alkaline SAC soil favored hydrolysis. CL-20 degradation was accompanied by the formation of formate, glyoxal, nitrite, ammonium, and nitrous oxide. Biotic degradation of CL-20 occurred through the formation of its denitrohydrogenated derivative (m/z 393 Da) while hydrolysis occurred through the formation of a ring cleavage product (m/z 156 Da) that was tentatively identified as CH2N-C(N-NO2)-CHN-CHO or its isomer N(NO2)CH-CHN-CO-CHNH. Due to their chemical specificity, these two intermediates may be considered as markers of in situ attenuation of CL-20 in soil.  相似文献   

16.
An extensive investigation at the Camp Edwards, Massachusetts Military Reservation (MMR) demonstrates that assessment of groundwater and soil contamination at military ranges can be limited primarily to explosive-related compounds such as RDX, HMX, perchlorate, TNT and their transformation products. A modified analytical method is recommended to expand the list of explosives and to improve the detection limits. Analyses of metals, VOCs, SVOCs, and TICs are unnecessary. Soil samples may require the analyses of PAHs and PCNs for burn areas. Camp Edwards, as one of the few military ranges that have been exhaustively investigated for contaminants, is an ideal point of departure for evaluating other ranges. The permeable site soils promote leaching of contaminants and inhibit biotic and abiotic transformations. Moreover, the site has experienced an unusual extent of activities in its more than ninety years of active use. The recommendations in this report are based on data obtained for more than 200 analytes from more than 15,000 environmental samples.  相似文献   

17.
Zhang C  Hughes JB 《Chemosphere》2003,50(5):665-671
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a military high explosive, is becoming an increasingly important pollutant in the US. The cleanup of RDX-contaminated soil and groundwater has been a serious challenge due to its recalcitrance in the environment. This study was conducted to determine the biodegradation kinetics of RDX by crude cell extract of Clostridium acetobutylicum (ATCC 824), and to examine whether this bacterium will carry out reductive transformation pathways similar to the transformation of 2,4,6-trinitrotoluene (TNT), 2,4- and 2,6-dinitrotoluenes (DNTs) we have reported previously. Batch studies on the anaerobic transformation of RDX were conducted in serum bottles with U-ring-14C-RDX. RDX and its transformation products were quantified by HPLC and qualified by LC/ MS interfaced to two soft ionization techniques--an atmospheric pressure ionization and an electron spray ionization (API-ES). Results demonstrated that C. acetobutylicum is capable of transforming RDX with H2 as the electron donor. The transformation followed a zero-order kinetics and the rates increased with increasing H2. RDX was transformed into several polar intermediates that could not be separated by reverse-phase HPLC and its molecular ions were unstable under the condition of commonly used electron impact detector. Using a polar and water immiscible solvent (ethyl acetate) and the softer MS ionization techniques, mass spectroscopy detected the presence of several RDX derivatives including mononitroso-, monohydroxylamino-, mononitrosomonohydroxylamino-, monoamino-, diamino-, and triamino-compounds. The presence of hydroxylamino compounds is analogous to the transformation of TNT and DNTs we elucidated previously.  相似文献   

18.
Munition residues from waste disposal on ordnance property have resulted in a defined plume of RDX contaminated groundwater stretching 6.5 km and underlying an area of 6.5 km2. A smaller plume of TNT was detected near the plant's boundary. The relative positions of the plumes combined with an historical review of total plant output of RDX and TNT indicates that RDX is much more persistent than TNT. The estimated RDX transport velocity of 0.5 m day−1 closely approximates the calculated Darcian velocity. The RDX plume sinks with recharge at a rate of about 0.5 m yr−1.Nitrate is associated primarily with adjacent upgradient landuse and is not related to plant manufacture of ammonium nitrate. The average δ15N of the Nitrate was about + 10% and strongly suggests that animal wastes are the predominant source.  相似文献   

19.
Incidental exposure to high explosive compounds can cause subtle health effects to which a population could be more susceptible than injury by detonation. Proper source characterization is a key requirement in the conduct of risk assessments. For nonvolatile solid explosives, dissolution is one of the primary mechanisms that controls fate and transport, resulting in exposure to these compounds remote from their source. To date, information describing dissolution rates of high explosives has been sparse. The objective of this study was to determine the dissolution rates of three high explosive compounds, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), in dilute aqueous solutions as a function of temperature, surface area, and energy input. To determine each variable's impact on dissolution rate, experiments were performed where one variable was changed while the other two were held constant. TNT demonstrated the fastest dissolution rate followed by HMX and then RDX. Dissolution rate correlation equations were developed for each explosive compound incorporating the three aforementioned variables, independently, and collectively in one correlation equation.  相似文献   

20.
Phosphor imager autoradiography is a technique for rapid, sensitive analysis of the localization of xenobiotics in plant tissues. Use of this technique is relatively new to research in the field of plant science, and the potential for enhancing visualization and understanding of plant uptake and transport of xenobiotics remains largely untapped. Phosphor imager autoradiography is used to investigate the uptake and translocation of the explosives 1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene within Populus deltoides × nigra DN34 (poplar) and Panicum vigratum Alamo (switchgrass). In both plant types, TNT and/or TNT-metabolites remain predominantly in root tissues while RDX and/or RDX-metabolites are readily translocated to leaf tissues. Phosphor imager autoradiography is further investigated for use in semi-quantitative analysis of uptake of TNT by switchgrass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号