首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The former Nebraska Ordnance Plant site in east-central Nebraska was included on the National Priorities List because of explosives and trichloroethene contamination. The preferred groundwater remedy includes hydraulic containment of the contaminated groundwater and focused extraction of the more highly contaminated groundwater as components of the remedial action. The purpose of hydraulic containment is to stop the spread of contamination, while the more aggressive focused extraction will be used to speed up the remediation and reduce total cleanup costs. This case study illustrates how straightforward groundwater models were combined with uncertainty analysis to select a precise definition of the focused extraction areas. The purpose of the analysis was to reduce ultimate remediation costs, given the significant uncertainty associated with the estimated remediation times. The selected definition provides a basis for more sophisticated groundwater modeling, the goal of which was to locate extraction wells and define their flow rates. The batch flushing model provided the governing equations, and Monte Carlo analysis was used for the uncertainty analysis. All of the analysis was performed on a personal computer using commercially available software.  相似文献   

2.
A three‐dimensional stochastic groundwater flow and contaminant transport model has been developed to optimize groundwater containment at an industrial site in Italy and to define likely future contaminant distribution under different confinement or remediation scenarios. The transport model was first calibrated using a deterministic approach to simulate the hydrochemical conditions prior to the optimization of groundwater extraction, then a probabilistic simulation was conducted to predict future contaminant concentrations. The stochastic approach allowed introducing an estimate of the uncertainty of the hydrogeological and chemical parameters into the model, simulating the probability density function of the contaminant concentrations after the application of the optimized barrier wells pumping rates. This allowed the calculation of the time required for the concentrations of each modeled parameter to decrease to under the regulatory limit at the compliance point, and associating the related uncertainty into the model. Quantifying the model prediction uncertainty facilitated a better understanding of the site environmental conditions, providing the site owners additional information for managing the site and allocating related economic resources. ©2016 Wiley Periodicals, Inc.  相似文献   

3.
A decision analysis based model (DAPS 1.0, Decision Analysis of Polluted Sites) has been developed to evaluate risks that polluted sites might pose to human health. Pollutants present in soils and sediments can potentially migrate from source to receptor(s), via different pathways. In the developed model, pathways are simulated via transport models (i.e. groundwater transport model, runoff-erosion model, air diffusion model, and sediment diffusion, and resuspension model in water bodies). Humans can be affected by pollutant migration through land and water use. Health risks can arise from ingestion of and dermal contact with polluted water and soil, as well as through inhalation of polluted air. Quantitative estimates of risks are calculated for both carcinogenic and non-carcinogenic pollutants. Being very heterogeneous, soil and sediment systems are characterized by uncertain parameters. Concepts of fuzzy set theory have been adopted to account for uncertainty in the input parameters which are represented by fuzzy numbers. An inference model using fuzzy logic has been constructed for reasoning in the decision analysis.  相似文献   

4.
The health of near shore marine ecosystems has long been a concern because of its importance to coastal areas. Jiaozhou Bay (JZB) is one such marine ecosystem experiencing rapid water quality degradation in the last several decades. From the area surrounding the bay, the nutrients discharged into the bay through surface water and groundwater has been greatly changed. The thickness of the aquifers and the permeability is relatively high, the concentrations of nutrients in the groundwater are generally high, and so the groundwater discharged into JZB is very significant. However, no attempt has ever been made to evaluate the amount of nutrients discharged into the bay area via groundwater. In this study, the cross-section method and water balance method were used to estimate the amount of groundwater and nutrients discharged into JZB via the subsurface. Groundwater was monitored and sampled at aquifers surrounding the bay area, and some previously available data was also analyzed. The results indicated that groundwater from the Baisha Aquifer east of JZB now is the major source of nutrients (nitrate, dissolved SiO2) being discharged into the bay. The concentrations of nutrients in the groundwater have been increasing with intensive agricultural land use. However, Dagu Aquifer, the largest aquifer north of JZB, only provides limited nutrients to the bay area because of the construction of a low permeability subsurface dam. Historically, during the 1970s to the 1990s, the Baisha Aquifer experienced seawater intrusion due to excessive groundwater withdrawal. The same was true for the Dagu Aquifer from the 1980s to the 1990s. Because of this, no significant nutrients were discharged into the bay.  相似文献   

5.
A common remedial technology for properties with subsurface soil and groundwater contamination is multiphase extraction (MPE). MPE involves the extraction of contaminated groundwater, free‐floating product, and contaminated soil vapor from the subsurface. A network of recovery wells conveys fluids to a vacuum pump and to the treatment system for the contaminated groundwater and soil vapor. This article describes a study of MPE operational data from nine similar remediation projects to determine the most important design parameters. Design equations from guidance manuals were used to estimate the expected radius of influence (ROI) based on measured field data. ROIs were calculated for the vapor flow rate through the subsurface and for the groundwater drawdown caused by the MPE remediation activities. The calculated ROIs were compared to the measured ROIs to corroborate the assumptions made in the calculations. Once it was established that the calculated and field‐measured ROIs were comparable, a sensitivity analysis determined ranges of different design and operational parameters that most affected the ROIs. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Electrical resistance heating (ERH) is an in situ treatment for soil and groundwater remediation that can reduce the time to clean up volatile organic compounds (VOCs) from years to months. The technology is now mature enough to provide site owners with both performance and financial certainty in their site‐closure process. The ability of the technology to remediate soil and groundwater impacted by chlorinated solvents and petroleum hydrocarbons regardless of lithology proves to be beneficial over conventional in situ technologies that are dependent on advective flow. These conventional technologies include: soil vapor recovery, air sparging, and pumpand‐treat, or the delivery of fluids to the subsurface such as chemical oxidization and bioremediation. The technology is very tolerant of subsurface heterogeneities and actually performs as well in low‐permeability silts and clay as in higher‐ permeability sands and gravels. ERH is often implemented around and under buildings and public access areas without upsetting normal business operations. ERH may also be combined with other treatment technologies to optimize and enhance their performance. This article describes how the technology was developed, how it works, and provides two case studies where ERH was used to remediate complex lithologies. © 2005 Wiley Periodicals, Inc.  相似文献   

7.
This paper provides an overview of the state of municipal solid waste management (MSWM) by local authorities in Kenya as a case study of a low-income developing country. Approaches of possible solutions that can be undertaken to improve municipal solid waste (MSW) services are discussed. Poor economic growth (1.1% in 1993) has resulted in an increase in the poverty level which presently stands at 56%. Migration from the rural areas to the urban areas has resulted in unplanned settlements in suburban areas accommodating about 60% of the urban population on only 5% urban land area. Political interference also hampers smooth running of local authorities. Vulnerability of pollution of surface and groundwater is high because local authorities rarely considered environmental impact in siting MSW disposal sites. Illegal dumping of MSW on the river banks or on the roadside poses environmental and economic threats on nearby properties. Poor servicing of MSW collection vehicles, poor state of infrastructure and the lack of adequate funding militate against optimization of MSW disposal service. The rural economy needs to be improved if rural-urban migration is to be managed. Involvement of stakeholders is important to achieve any meaningful and sustainable MSWM. The role of the informal sector through community-based organizations (CBOs), Non-Governmental Organizations (NGOs) and the private sector in offering solutions towards improvement of MSWM also is explored.  相似文献   

8.
Rapid groundwater fluxes often influence subsurface temperature distributions during in situ thermal remediation using electrothermal or conduction heating technologies. This study used a numerical approach to evaluate the impact of groundwater flow on electrothermal heating, as well as the effectiveness of several upgradient heat loss management strategies, in a hypothetical treatment volume. Design alternatives using upgradient (i) hydraulic barriers, (ii) physical barriers, and (iii) increased energy input are evaluated. Results indicate that target temperatures can be achieved, despite the presence of local groundwater flow velocities greater than 0.3 m/day, through the careful design and implementation of the alternatives evaluated. However, physical barriers need to be designed to prevent groundwater flow through the heated volume to be effective. Field data from an electrothermal application are also presented, where boiling temperatures were achieved after steam injection and upgradient pumping wells were implemented.  相似文献   

9.
This article presents the results of a pilot test that was conducted to determine the effectiveness of using steam‐enhanced dual‐phase extraction (DPE) at a former industrial site in New York. The pilot test proved that steam‐enhanced DPE was very effective at removing significant contaminant mass from the subsurface in a relatively short time period. Concentrations of volatile organic compounds and semivolatile organic compounds in the vapor stream and groundwater were successfully reduced, in some cases by orders of magnitude. Based on the results of the steam‐enhanced DPE pilot test, the final remedy for the site includes implementing this technology at selected areas as an alternative to DPE alone or other remedial alternatives, such as excavation or groundwater pump and treat. © 2003 Wiley Periodicals, Inc.  相似文献   

10.
Active sediment caps are being considered for addressing contaminated sediment areas in surface‐water bodies. A demonstration of an active cap designed to reduce advective transport of contaminants using AquaBlok® (active cap material) was initiated in a small study area of the Anacostia River in Washington, D.C. The cap remained physically stable, demonstrated the ability to divert groundwater flow, and was recolonized with native organisms after 30 months of monitoring following cap placement. However, the long‐term performance of active caps associated with harsh environmental conditions, hydrogeological settings, and subsurface gas production needs to be further evaluated. © 2008 Wiley Periodicals, Inc.  相似文献   

11.
The remediation of groundwater contaminated with waterborne pathogens, in particular with viruses, is based on their probable or actual ability to be transported from the source of origin to a point of withdrawal while maintaining the capacity to cause infections. The transport is often associated with both the unsaturated and saturated subsurface composed of varying geological settings with commensurate hydrogeological variability. Included among the most important hydrogeological factors that can be used to evaluate viral transport are the flux of moisture in the unsaturated zone, the media through which the particles travel, the length of the flow path, and the time of travel. With respect to the movement and inactivation of viruses in the subsurface, the vadose zone can provide an effective barrier for movement into groundwater and for the protection of downgradient points of withdrawal and use. Models developed to predicate viral transport in soil and groundwater are introduced, including screening models and more sophisticated predictive numerical models. As evidenced by the exponential growth of virus transport research in the literature, as well as a continuing interest in human health, the subject will continue to be one of critical importance to professionals active in the development, treatment, and conveyance of groundwater in the future. © 2005 Wiley Periodicals, Inc.  相似文献   

12.
A large number of states have issued guidance addressing the vapor intrusion pathway making it difficult to keep up with various policies and requirements. We have compiled and reviewed guidance from 35 states, half of which have issued documents within the last three years. A comparison of policies among states shows reasonable consistency in some areas—for example, 20 of 23 states that provide an exclusion distance for subsurface sources of chlorinated volatile organic compounds (VOCs) use a distance of 100 feet. However, more commonly, the policy decisions vary widely. Among states, indoor air screening concentrations for the same VOC vary by more than 2,000 times and subsurface screening concentrations vary by more than 2,000,000 times. These wide discrepancies suggest a need for communication and consensus building in order to increase consistency in the management of the vapor intrusion pathway. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
In situ chemical oxidation (ISCO) typically delivers oxidant solutions into the subsurface for contaminant destruction. Contaminants available to the oxidants, however, are limited by the mass transfer of hydrophobic contaminants into the aqueous phase. ISCO treatments therefore often leave sites with temporarily clean groundwater which is subject to contaminant rebound when sorbed and free phase contaminants leach back into the aqueous phase. Surfactant Enhanced In situ Chemical Oxidation (S‐ISCO®) uses a combined oxidant‐surfactant solution to provide optimized contaminant delivery to the oxidants for destruction via desorption and emulsification of the contaminants by the surfactants. This article provides an overview of S‐ISCO technology, followed by an implementation case study at a coal tar contaminated site in Queens, New York. Included are data points from the site which demonstrate how S‐ISCO delivers desorbed contaminants without uncontrolled contaminant mobilization, as desorbed and emulsified contaminants are immediately available to the simultaneously injected oxidant for reaction. ©2016 Wiley Periodicals, Inc.  相似文献   

14.
The Hazardous Substance Research Center (HSRC) was established by the U.S. Environmental Protection Agency (EPA) to assist in the implementation of Superfund and to address major hazardous substance environmental problems at a regional level. Over the past 12 years, the HSRC program has produced more than 1,200 peer‐reviewed technical articles, 27 patents and licenses, 21 new technologies for the remediation marketplace, and provided technical assistance to more than 300 communities. Research, technology transfer, and training are conducted by five regional multi‐university centers, which focus on different aspects of hazardous substance management. Areas of focus include urban environments, contaminated sediments, natural remediation and restoration technologies, abandoned mine lands, and chlorinated solvents in groundwater. This article provides an overview of the five HSRC programs including current areas of research, field studies, and technology transfer Internet links to access research results and remediation technology information. © 2003 Wiley Periodicals, Inc.  相似文献   

15.
Deep drainage technique utilised for flood mitigation in low-land coastal areas of Australia during the late 1960s has resulted in the generation of sulphuric acid in soil by the oxidation of pyritic materials. Further degradation of the subsurface environment with widespread contamination of the underlying soil and groundwater presents a major and challenging environmental issue in acid sulphate soil (ASS) terrains. Although several ASS remediation techniques recently implemented in the floodplain of Southeast Australia including operation of gates, tidal buffering and lime injections could significantly control the pyrite oxidation, they could not improve the long-term water quality. More recently, permeable reactive barriers (PRBs) filled with waste concrete aggregates have received considerable attention as an innovative, cost-effective technology for passive in situ clean up of groundwater contamination. However, long-term efficiency of these PRBs for treating acidic groundwater has not been established. This study analyses and evaluates the performance of a field PRB for treating the acidic water over 2.5 years. The pilot-scale alkaline PRB consisting of recycled concrete was installed in October 2006 at a farm of southeast New South Wales for treating ASS-impacted groundwater. Monitoring data of groundwater quality over a 30 month period were assessed to evaluate the long-term performance of the PRB. Higher pH value (~pH 7) of the groundwater immediately downstream of the PRB and higher rates of iron (Fe) and aluminium (Al) removal efficiency (>95%) over this study period indicates that recycled concrete could successfully treat acidic groundwater. However, the overall pH neutralising capacity of the materials within the barrier declined with time from an initial pH 10.2 to pH 7.3. The decline in the performance with time was possibly due to the armouring of the reactive material surface by the mineral precipitates in the form of iron and aluminium hydroxides and oxyhydroxides as indicated by geochemical modelling.  相似文献   

16.
There has been a great deal of focus on methyl tertiary butyl ether (MTBE) over the past few years by local, state, and federal government, industry, public stakeholders, the environmental services market, and educational institutions. This focus is, in large part, the result of the widespread detection of MTBE in groundwater and surface waters across the United States. The presence of MTBE in groundwater has been attributed primarily to the release from underground storage tank (UST) systems at gasoline service stations. MTBE's physical and chemical properties are different than other constituents of gasoline that have traditionally been cause for concern [benzene, toluene, ethylbenzene, and xylenes (BTEX)]. This difference in properties is why MTBE migrates differently in the subsurface environment and exhibits different constraints relative to mitigation and remediation of MTBE once it has been released to subsurface soils and groundwater. Resource Control Corporation (RCC) has accomplished the remediation of MTBE from subsurface soil and groundwater at multiple sites using ozone. RCC has successfully applied ozone at several sites with different lithologies, geochemistry, and concentrations of constituents of concern. This article presents results from several projects utilizing in situ chemical oxidation with ozone. On these projects MTBE concentrations in groundwater were reduced to remedial objectives usually sooner than anticipated. © 2002 Wiley Periodicals, Inc.  相似文献   

17.
In-situ sparging has been accepted as a method to rapidly remediate groundwater at considerably lower costs compared to remedies based on groundwater recovery alone. The success of in-situ sparging depends on effective mass transfer between air and contaminated media in the subsurface. Factors affecting mass transfer include advective airflow, diffusive transport, interphase chemical partitioning, and chemical and biological reaction rates between sparged gases and subsurface contaminants, minerals, and naturally occurring organic compounds. Understanding these factors can increase the design efficiency of in-situ sparging and assist in developing sparging systems that use gases other than air (i.e., oxygen, ozone, and methane).  相似文献   

18.
Well-recovery networks coupled to immobilized microbe bioreactors (IMBRs) were installed at a 172-acre former wood preserving facility for the bioremediation of organic wood preservatives present in site groundwater. Free-phase creosote from the hardpan and soluble preservative fractions contained in subsurface groundwater were pumped separately to different holding tanks. Trace creosote fractions contained in the subsurface groundwater were further gravity separated in the holding tank. Immobilized microbial isolates evaluated in earlier laboratory and field pilot tests were established into two 40, 000-liter bioreactors for the biodegradation of all targeted consitituents. Microbial growth, dissolved oxygen, pH, nutrients, flow rate, and temperature were monitored in this in situ/ex situ bioremediation system. The process was used to remove the polycyclic aromatic hydrocarbon (PAH) and phenolic components of creosote and pentachlorophenol from contaminated groundwater. Data generated during the past 2 1/2 years indicate that 26 target compounds consistently are reduced to levels acceptable for discharge. Currently operating in Baldwin, Florida, this full-scale prototype is remediating the former wood preserving facility and is being used as a model system for the design and construction of new bioreactor systems needed at similar industrial sites in the United States and abroad.  相似文献   

19.
Heavy metals and toxic organic contaminants are found at numerous industrial and military sites. The generally poor performance of conventional pump‐and‐treat schemes has made the development of improved methods for contaminated site remediation a significant environmental priority. One such innovative method is cyclodextrin‐enhanced flushing of the contaminated porous media and groundwater. Cyclodextrin is a glucose‐based molecule that is produced on industrial scales by microorganisms. Over the last years, several cyclodextrin derivatives have received extensive research interest. It was shown that cyclodextrins can significantly enhance the solubility of toxic organics, and in some cases, heavy metals and radioactive isotopes. As a sugar, cyclodextrin is considered relatively non‐toxic to humans, plants, and soil microbes. Thus, there are minimal health‐related concerns associated with the injection of cyclodextrin into the subsurface, which is an inherent advantage for use of cyclodextrins as a remediation agent. This paper provides a review of the available literature concerning use of cyclodextrin for remediation of groundwater and soil.  相似文献   

20.
This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号