首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seed choice by rodents: learning or inheritance?   总被引:1,自引:0,他引:1  
Learning plays a central role in animal life, and it has received special attention in the context of foraging. In this study, we have tested whether learning operates in seed choices by rodents using the Algerian mouse (Mus spretus) and Holm oak (Quercus ilex) acorns as a model. At the laboratory, those rodents captured in the field during the acorn fall period (experienced individuals) rejected weevil-infested acorns, presumably because of their lower energetic value. By contrast, rodents born in captivity and reared without any contact with acorns (naïves) predated weevil-infested acorns at similar rates than sound ones. After exposing naïves to infested and sound acorns during 15 days, they rejected infested acorns as the experienced individuals. In the field, predation on weevil-infested acorns was lower than on sound ones. Predation rates on infested acorns were lowest at the end of the acorn fall season, whereas predation rates of sound acorns increased along the same period. This might be explained by the improved ability to reject infested acorns because of the accumulated experience acquired by the initially naïve rodents along the acorn fall season. We show that learning shapes strongly seed choices by rodents, and it may be advantageous over inherited behaviors in variable unpredictable situations, such as acorn infestation rates that vary strongly between years and trees. We consider that the role of learning has to be taken into account in future studies on seed predation by rodents.  相似文献   

2.
Temporally variable production of seed crops by perennial plants (masting) has been hypothesized to be a valuable mechanism in the reduction of seed predation by satiating and starving seed consumers. To achieve these benefits, coexisting species subjected to the same predator would benefit from a similar pattern of seeding fluctuation over time that could lead to a reduction in predation at the within-species level. We tested for the existence of an environmental factor enforcing synchrony in acorn production in two sympatric Mediterranean oaks (Quercus ilex and Q. humilis) and the consequences on within-species and between-species acorn predation, by monitoring 15 mixed forests (450 trees) over seven years. Acorn production in Q. ilex and Q. humilis was highly variable among years, with high population variability (CVp) values. The two species exhibited a very different pattern across years in their initial acorn crop size (sum of aborted, depredated, and sound acorns). Nevertheless, interannual differences in summer water stress modified the likelihood of abortion during acorn ripening and enforced within- and, particularly, between-species synchrony and population variability in acorn production. The increase in CVp from initial to mature acorn crop (after summer) accounted for 33% in Q. ilex, 59% in Q. humilis, and 60% in the two species together. Mean yearly acorn pre-dispersal predation by invertebrates was considerably higher in Q. humilis than in Q. ilex. Satiation and starvation of predators was recorded for the two oaks, and this effect was increased by the year-to-year variability in the size of the acorn crop of the two species combined. Moreover, at a longer time scale (over seven years), we observed a significant reduction in the mean proportion of acorns depredated for each oak and the variability in both species' acorn production combined. Therefore, our results demonstrate that similar patterns of seeding fluctuation over time in coexisting species mediated by an environmental cue (summer drought) may contribute to the reduction of the impact of seed predation at a within-species level. Future research should be aimed at addressing whether this process could be a factor assisting in the coexistence of Q. ilex and Q. humilis.  相似文献   

3.
The food perishability hypothesis reasons that the perishability of nondormant acorns through rapid germination is the primary determinant of hoarding decisions (e.g., embryo removal in nondormant acorns in particular) by scatter-hoarding squirrels. However, we do not know whether seed size and its interactions with seed germination schedule affect squirrel’s hoarding decisions. By presenting pairs of acorns with contrasting germination/dormancy conditions and seed size, we investigated the relative importance of each target trait in determining the hoarding decisions of free-ranging Pére David’s rock squirrel (Sciurotamias davidianus) in Central China. Consistent with the food perishability hypothesis, the squirrels were highly sensitive to subtle differences of acorn germination status either within nondormant acorns or between nondormant and dormant acorns. Though there were no significant differences in seed hoarding and dispersal distance, the embryo-removal probability of nondormant acorns (especially those germinated) was much higher than that of dormant acorns prior to hoarding. Our results also support the seed size hypothesis. Large acorns were often hoarded more and moved farther than small acorns, and large nondormant acorns also had a higher probability of having their embryos removed. Moreover, the interactions between seed size and seed germination schedule had a large effect on whether a given acorn was hoarded or hoarded with its embryo removed. Our study indicates that the combined effects from seed germination schedule and seed size have the potential to determine hoarding decisions of scatter-hoarding squirrels.  相似文献   

4.
Abstract:  We examined the vulnerability of 34 species of oaks ( Quercus ) and pines ( Pinus ) to the effects of global climate change in Mexico. We regionalized the HadCM2 model of climate change with local climatic data (mean annual temperature and rainfall) and downscaled the model with the inverse distance-weighted method. Databases of herbaria specimens, genetic algorithms (GARP), and digital covers of biophysical variables that affect oaks and pines were used to project geographic distributions of the species under a severe and conservative scenario of climate change for the year 2050. Starting with the current average temperature of 20.2 °C and average precipitation of 793 mm, under the severe warming scenario mean temperature and precipitation changed to 22.7 °C and 660 mm, respectively, in 2050. For the conservative warming scenario, these variables shifted to 21.8 °C and 721 mm. Responses to the different scenarios of climate change were predicted to be species-specific and related to each species climate affinity. The current geographic distribution of oaks and pines decreased 7–48% and 0.2–64%, respectively. The more vulnerable pines were Pinus rudis , P. chihuahuana , P. oocarpa , and P. culminicola , and the most vulnerable oaks were Quercus crispipilis , Q. peduncularis , Q. acutifolia , and Q. sideroxyla . In addition to habitat conservation, we think sensitive pine and oak species should be looked at more closely to define ex situ strategies (i.e., seed preservation in germplasm banks) for their long-term conservation. Modeling climatic-change scenarios is important to the development of conservation strategies.  相似文献   

5.
Abstract:  Studies of the effects of logging on Lepidoptera rarely address landscape-level effects or effects on larval, leaf-feeding stages. We examined the impacts of uneven-aged and even-aged logging on the abundance, richness, and community structure of leaf-chewing insects of white ( Quercus alba L.) and black ( Q. velutina L.) oak trees remaining in unharvested areas by sampling 3 years before and 7 years after harvest. After harvest, white oaks in uneven-aged sites had 32% fewer species of leaf-chewing insects than control sites. This reduction in species richness may have resulted from changes in microclimate (reducing plant quality and/or changing leaf phenology) that affected a much larger total area of each site than did even-aged cuts. For black oak after harvest, species richness in uneven- and even-aged sites increased relative to levels before harvest. Harvesting did not alter total insect density or community structure in the unlogged habitat for either oak species with one exception: insect density on black oak increased in the oldest forest block. Community structure of herbivores of black and white oaks in clearcut gaps differed from that of oaks in intact areas of even-aged sites. Furthermore, both richness and total insect density of black oaks were reduced in clearcut gaps. We suggest that low-level harvests alter herbivore species richness at the landscape level. Treatment effects were subtle because we sampled untreated areas of logged landscapes, only one harvest had occurred, and large temporal and spatial variation in abundance and richness existed. Although the effects of logging were greater in uneven-aged sites, the effects of even-aged management are likely to increase as harvesting continues.  相似文献   

6.
Summary Acorn woodpeckers (Melanerpes formicivorus) were studied during the summers of 1976 and 1977 in the Chiricahua Mountains of Arizona to determine the ecological correlates of variations in unit size, storage behavior, and home range. Unit size varied from two to five adults, acorn storage capacity varied from 0 to 5,000 individual holes per unit, and home range size varied from 5.2 to 51.2 ha.There was a consistent but nonsignificant trend for units inhabiting pine-oak woodland to be larger and to maintain more food storage holes than units in oak-juniper or oak woodland. Pine-oak woodland had the highest oak species number, density, and basal area of any community in the study area, and showed the least annual variation in percent of oaks producing acorns during the study. However, pineoak woodland also had the lowest acorn productivity per hectare.More than four times as many oak trees produced acorns in 1977 than in 1976. Following the poor 1976 crop, unit home range size increased so that the mean number of oaks contained per home range size increased more than three and a half times in 1977. The number of woodpecker units containing nonbreeding adults decreased from 90% in 1976 to 20% in 1977. These data suggest that the size and reliability of acorn crops control the composition of acorn woodpecker social units.A comparison of acorn woodpecker population parameters in the Chiricahua Mountains and at the Hastings Reservation, California, was made, using data of MacRoberts and MacRoberts (1976). The California population was significantly more dense and maintained more storage trees and more individual storage holes per unit, but there was no evidence that more California units contained nonbreeding adults than did Chiricahua units.A model is presented that emphasizes the importance of acorn crop reliability as the major determinant of acorn woodpecker social organization (Fig. 2). Annual crop fluctuations affect the winter survival and dispersion of woodpecker units, and the density of the population in the following spring. Bad acorn years will result in decreased saturation of woodpecker nesting habitat by established groups. The model predicts a corresponding decrease in the frequency of units with helpers, as young adults take advantage of opportunities to breed on their own. Longer-term crop reliability determines the benefitcost ratio for establishing and maintaining food storage facilities. The observed geographic variation in storage behavior between California and Arizona populations is suggested to reflect differences in the long-term return on investment in expensive storage facilities.  相似文献   

7.
Moran EV  Clark JS 《Ecology》2012,93(5):1082-1094
Inequality in reproductive success has important implications for ecological and evolutionary dynamics, but lifetime reproductive success is challenging to measure in long-lived species such as forest trees. While seed production is often used as a proxy for overall reproductive success, high mortality of seeds and the potential for trade-offs between seed number and quality draw this assumption into question. Parentage analyses of established seedlings can bring us one step closer to understanding the causes and consequences of variation in reproductive success. In this paper we demonstrate a new method for estimating individual seedling production and average percentage germination, using data from two mixed-species populations of red oaks (Quercus rubra, Q. velutina, Q. falcata, and Q. coccinea). We use these estimates to examine the distribution of female reproductive success and to test the relationship between seedling number and individual seed production, age, and growth rate. We show that both seed and seedling production are highly skewed, roughly conforming to zero-inflated lognormal distributions, rather than to the Poisson or negative-binomial distributions often assumed by population genetics analyses. While the number of established offspring is positively associated with mean annual seed production, a lower proportion of seeds from highly fecund individuals become seedlings. Our red oak populations also show evidence of trade-offs between growth rate and reproductive success. The high degree of inequality in seedling production shown here for red oaks, and by previous studies in other species, suggests that many trees may be more vulnerable to genetic drift than previously thought, if immigration in limited by fragmentation or other environmental changes.  相似文献   

8.
Schmidt KA  Ostfeld RS 《Ecology》2008,89(3):635-646
Some of the clearest examples of the ramifying effects of resource pulses exist in deciduous forests dominated by mast-producing trees, such as oaks, beech, and hornbeam. Seed production in these forests represents only the first of several pulsed events. Secondary pulses emerge as mast-consuming small rodents numerically respond to seed production and tertiary pulses emerge as generalist predators numerically respond to rodents. Raptors may also respond behaviorally (i.e., diet shifts) to subsequent crashes in small rodents following the crash phase in seed production. In oak-dominated forest in the Hudson Valley, New York, these various pulse and crash phases act synergistically, although not simultaneously, to influence thrush population dynamics through predation on nests, juveniles, and adults. As a consequence, factors limiting population growth rate and their age-specific action vary as a function of past acorn production. We highlight these interactions based on our eight-year study of thrush demography, acorn production, and small mammal abundance coupled with information on regional adult thrush population trends from the Breeding Bird Survey. We use these data sets to demonstrate the sequence of primary to tertiary pulses and how they influence breeding thrush populations. To extend our discussion beyond masting phenomena in the eastern United States, we briefly review the literature of alternative avian prey within pulsed systems to show (1) numerical and behavioral responses by generalist predators are ubiquitous in pulsed systems, and this contributes to (2) variability in reproduction and survivorship of avian prey linked to the underlying dynamics of the pulse. We conclude by exploring the broad consequences of cascading resource pulses for alternative prey based upon the indirect interaction of apparent competition among shared prey and the nature of temporal variability on populations.  相似文献   

9.
This study was conducted to evaluate how acom size (small, medium and large) and acorn storage duration (0, 5 and 17 months) influenced Quercus petraea (Mattuschka) moisture content and germination. Acorn size and storage duration did not significantly affect acorn moisture content, but they significantly affected acorn germination performance. When averaged for three acorn sizes, loss of germination performance occurred after 17 months of storage even when the moisture content did not reduce significantly and remain at the initial level (32.6%). Maximum germination percentage was observed in large and medium size classes before storage (93 and 95%, respectively) and after 5-month storage (94 and 93%, respectively), but after 17-month storage medium acorn size class exhibited the highest germination (68%). Small seed size class exhibited the lowest germination percentage and rate in each acorn storage duration. Acorn size also significantly affected seedling emergence and survival in the nursery and seedling emergence and survival was the lowest in small seed size class (85 and 80%, respectively). Although seedling survival of one-year seedlings in the nursery increased up to large seed size class, maximum survival in nursery conditions was observed in large and medium size classes (89 and 91%, respectively). Thus, acorn size grading in Q. petraea may result in higher germination performance within in a seedbed.  相似文献   

10.
Patch use as an indicator of habitat preference,predation risk,and competition   总被引:34,自引:0,他引:34  
Summary A technique for using patch giving up densities to investigate habitat preferences, predation risk, and interspecific competitive relationships is theoretically analyzed and empirically investigated. Giving up densities, the density of resources within a patch at which an individual ceases foraging, provide considerably more information than simply the amount of resources harvested. The giving up density of a forager, which is behaving optimally, should correspond to a harvest rate that just balances the metabolic costs of foraging, the predation cost of foraging, and the missed opportunity cost of not engaging in alternative activities. In addition, changes in giving up densities in response to climatic factors, predation risk, and missed opportunities can be used to test the model and to examine the consistency of the foragers' behavior. The technique was applied to a community of four Arizonan granivorous rodents (Perognathus amplus, Dipodomys merriami, Ammospermophilus harrisii, and Spermophilus tereticaudus). Aluminum trays filled with 3 grams of millet seeds mixed into 3 liters of sifted soil provided resource patches. The seeds remaining following a night or day of foraging were used to determine the giving up density, and footprints in the sifted sand indicated the identity of the forager. Giving up densities consistently differed in response to forager species, microhabitat (bush versus open), data, and station. The data also provide useful information regarding the relative foraging efficiencies and microhabitat preferences of the coexisting rodent species.  相似文献   

11.
Summary Individual seed harvester ants (Pogonomyrmex) have been shown to specialize on specific seed types. We examined possible mechanisms for seed specialization and tested whether fidelity to food type limits the foraging decisions of individual western harvester ants, Pogonomyrmex occidentalis. The seed selection regimes of individually marked ants foraging at piles of two seed types were described and related to differences in seed quality and colonial dietary history. Individual foraging choices were affected by multiple factors, including seed caloric rewards, the previous seed selected, and the dietary history of the colony. Individual seed choices generally converged on the most energetically profitable species, suggesting that foragers exhibit labile preference. However, for a portion of the foragers, seed specialization was also partially due to constancy, defined as a tendency to select seed species that were previously collected. When colonies were presented with one seed type for 1 h and then were offered a mix of that seed and a novel seed type, individuals showed a strong preference for the novel seeds. Such rapid changes in seed preference argue strongly that individual P. occidentalis ants are highly flexible in seed choice and that resource assessment by these ants is more complex than simple maximization of net energetic return.Offprint requests to: J.H. Fewell at the current address  相似文献   

12.
McConkey KR  Brockelman WY 《Ecology》2011,92(7):1492-1502
Plant species with generalized dispersal mutualisms are considered to be robust to local frugivore extinctions because of redundancy between dispersal agents. However, real redundancy can only occur if frugivores have similar foraging and ranging patterns and if fruit is a limiting resource. We evaluated the quantitative and qualitative contributions of seed dispersers for an endochorus mast-fruiting species, Prunus javanica (Rosaceae) in Khao Yai National Park, Thailand, to evaluate the potential redundancy of dispersers. Data were collected from tree watches, seed/fruit traps, and seed transects under and away from fruiting trees, feeding and seed deposition by gibbons (Hylobates lar), and evaluations of seed and first-year seedling survival. We identified three clusters of dispersers within the network. Most (>80%) frugivore species observed were small birds and squirrels that were not functional dispersers, dropping most seeds under or very near the tree crown, where seedling survival was ultimately nil. Monkeys (Macaca leonina) were low-quality, short-range dispersers, but they dispersed large numbers of seeds and were responsible for 67% of surviving first-year seedlings. Gibbons and Oriental Pied Hornbills (Anthracoceros albirostris) handled few fruits, but they provided the highest quality service by carrying most seeds away from the canopy to medium and long distances, respectively. Although there was overlap in the deposition patterns of the functional dispersers, they displayed complementary, rather than redundant, roles in seed dispersal. Satiation of all functional dispersers further limited their capacity to "replace" one another. Redundancy must be evaluated at the community level because each type of disperser may shift to different species in the non-masting years of P. javanica. Our results underscore the need for research on broader spatial and temporal scales, which combines studies of dispersal and plant recruitment, to better understand mechanisms that maintain network stability.  相似文献   

13.
Abstract: Species occurrence in a habitat patch depends on local habitat and the amount of that habitat in the wider landscape. We used predictions from empirical landscape studies to set quantitative conservation criteria and targets in a multispecies and multiscale conservation planning effort. We used regression analyses to compare species richness and occurrence of five red‐listed lichens on 50 ancient oaks (Quercus robur; 120–140 cm in diameter) with the density of ancient oaks in circles of varying radius from each individual oak. Species richness and the occurrence of three of the five species were best explained by increasing density of oaks within 0.5 km; one species was best explained by the density of oaks within 2 km, and another was best predicted by the density of oaks within 5 km. The minimum numbers of ancient oaks required for “successful conservation” was defined as the number of oaks required to obtain a predicted local occurrence of 50% for all species included or a predicted local occurrence of 80% for all species included. These numbers of oaks were calculated for two relevant landscape scales (1 km2 and 13 km2) that corresponded to various species responses, in such a way that calculations also accounted for local number of oaks. Ten and seven of the 50 ancient oaks surveyed were situated in landscapes that already fulfilled criteria for successful conservation when the 50% and 80% criteria, respectively, were used to define the level of successful conservation. For cost‐efficient conservation, oak stands in the landscapes most suitable for successful conservation should be prioritized for conservation and management (e.g., grazing and planting of new oaks) at the expense of oak stands situated elsewhere.  相似文献   

14.
Kudo G  Ida TY  Tani T 《Ecology》2008,89(2):321-331
Light availability in the understory of deciduous forests changes drastically within the growing season due to the foliage dynamics of canopy trees. Because flowering phenology, photosynthetic characteristics, and fruiting success respond to such strong seasonality in light availability, we hypothesized that understory plants in such ecosystems should describe distinct phenological groups or syndromes where "syndrome" is defined only as a set of characteristics that co-occur. To identify these phenological syndromes, we studied the flowering phenology, fruit or seed set, and photosynthetic characteristics for 18 perennial understory herbaceous species that differed in reproductive strategy over eight years in a deciduous forest in northern Japan. Three phenological groups emerged from this study: (1) spring bloomers, flowering and fruiting before the completion of canopy closure; (2) early-summer bloomers, flowering during the progress of canopy closure and fruiting after canopy closure; and (3) late-summer bloomers, flowering and fruiting after canopy closure. The spring bloomers had high photosynthetic rates and high fruiting abilities, but the flowering time varied considerably among years due to yearly fluctuations of snowmelt date. Bumble bee-pollinated species of spring bloomers showed variable seed-set success, while fly-pollinated species showed relatively stable seed sets over the years. The early-summer bloomers showed low fruiting abilities irrespective of pollination success, reflecting severe resource limitation with decelerating light availability during fruit development. Although the late-summer bloomers showed low photosynthetic rates under low-light conditions, high fruit-set success was attained if pollination was sufficient. These results support our hypothesis that phenological syndromes may be found in deciduous forest understory plants. Given that reproductive success of bee-pollinated spring bloomers is highly susceptible to seasonal fluctuation, climate change may have its strongest impacts on this group.  相似文献   

15.
Mast seeding, the synchronous, highly variable seed production among years, is very common in tree species, but there is no consensus about its main causes and the main environmental factors affecting it. In this study, we first analyze a long-term data set on reproductive and vegetative growth of Quercus ilex in a mediterranean woodland in order to identify the main environmental drivers of interannual variation in flower and seed production and contrast the impact of climate vs. adaptive factors as main causes of masting. Second, we conducted an experiment of rainfall exclusion to evaluate the effects of an increasing drought (simulating predictions of global change models) on both reproductive processes. The annual seed crop was always affected by environmental factors related to the precipitation pattern, these abiotic factors disrupting the fruiting process at different periods of time. Seed production was strongly dependent upon water availability for the plant at initial (spring) and advanced (summer) stages of the acorn maturation cycle, whereas the final step of seed development was negatively affected by the frequency of torrential-rain events. We also found clear evidence that seed masting in the study species is not only regulated by selective endogenous rhythms, but is mainly a physiological response to the variable environment. Our results from the rainfall exclusion experiment corroborated the conclusions obtained from the 26-year fruiting record and demonstrated that the high interannual variation in seed crop was mainly determined by the success in seed development rather than by the flowering effort. Under a global change scenario, it could be expected that the drier conditions predicted by climate models reinforce the negative effects of summer drought on seed production, leading to negative consequences for tree recruitment and forest dynamics.  相似文献   

16.
《Ecological modelling》2005,185(1):93-103
The effect of the seed abscission process on the dispersal distance of seeds has never been studied explicitly and is often ignored in studies that aim to estimate the seed shadows of species. To examine the importance of the abscission process for the seed shadow we used a seed trajectory model that keeps track of the release threshold dynamics of the individual seeds on mother plant. We defined the release threshold as the critical wind speed that induces a mechanical force that is just large enough to release a seed from its mother plant. The model used real wind speed sequences and seed appearance over time on the mother plant.Several calculations were performed to investigate the effect of release thresholds dynamics on seed shadow of two herbaceous species with contrasting terminal velocity values (Vt): Centaurea jacea (Vt = 4.1 m s−1) and Hypochaeris radicata (Vt = 0.49 m s−1).Release thresholds were responsible for a two-fold increase of median dispersal distances in both species. Tails of the seed shadows, the fraction of seeds that travel furthest, were even more sensitive and increased with a factor 4.5 for Centaurea and 7.0 for Hypochaeris. Our work indicates that the abscission process appears to be very important and suggests that dispersal distance of plants is currently severely underestimated, which, in turn, has major consequences for our current understanding of the distribution, metapopulation dynamics and survival of plant species.  相似文献   

17.
This study presents the phenology of two common Mediterranean sponges belonging to the genus Oscarella (Porifera, Homoscleromorpha). Oscarella tuberculata and Oscarella lobularis are two sibling species, dwellers of shallow benthic communities which tend to have distinct ecological behavior, respectively, euryecious and rather stenoecious. The comparative study of their reproductive cycle showed that both Oscarella species have a seasonal reproductive cycle with a successive phase duration differing from one species to another. In both species, there is a continuous oogenesis, with new oocytes appearing in spring, whereas the spermatogenesis generally starts later with the early warming of the sea. The embryonic development and the larval release are restricted to the warmest months of the year. We also observed a shift in the period of gametogenesis and larval emission depending on species and differences in their sensitivity to changes in thermal regime. It appears that an increase in seawater temperature can affect sex determination, with mainly a shift toward males in both species. Their reproductive efforts are variable in time, and can be in some cases influenced by the temperature regime. This is especially the case of O. lobularis which seems to be the most thermosensitive, its phenology responding significantly to changes in thermal regime, whereas O. tuberculata seems to be less sensitive and/or reactive. By detecting phenological changes among sponges, this study demonstrated the relevance of such monitoring to assess the possible biological response to climate change.  相似文献   

18.
We measured spatial and temporal patterns of seed dispersal and seedling recruitment for 58 species in a grassland community to test whether seed dispersal could predict patterns of invasion after disturbance. For the 12 most abundant grasses, recruitment of native species was dependent on the propagule supply of both native and exotic species. Variability in seed rain on small spatial (1-10 m) and temporal (within season) scales led to qualitative differences in the outcome of disturbance colonization such that native species dominated disturbances when exotic seed supply was low but failed to establish when exotic seed supply was high. Local dispersal and spatial heterogeneity in species composition promoted coexistence of native and exotic species by creating refuges from high exotic seed supply within native dominated patches. Despite this, copious exotic seed production strongly limited recruitment of native species in exotic dominated patches. Most grasslands in California are presently dominated by exotic species, suggesting that competition at the seedling stage is a major barrier to native species restoration.  相似文献   

19.
Morales JM  Carlo TA 《Ecology》2006,87(6):1489-1496
For many plant species, seed dispersal is one of the most important spatial demographic processes. We used a diffusion approximation and a spatially explicit simulation model to explore the mechanisms generating seed dispersal kernels for plants dispersed by frugivores. The simulation model combined simple movement and foraging rules with seed gut passage time, plant distribution, and fruit production. A simulation experiment using plant spatial aggregation and frugivore density as factors showed that seed dispersal scale was largely determined by the degree of plant aggregation, whereas kernel shape was mostly dominated by frugivore density. Kernel shapes ranged from fat tailed to thin tailed, but most shapes were between an exponential and that of the solution of a diffusion equation. The proportion of dispersal kernels with fat tails was highest for landscapes with clumped plant distributions and increased with increasing number of dispersers. The diffusion model provides a basis for models including more behavioral details but can also be used to approximate dispersal kernels once a diffusion rate is estimated from animal movement data. Our results suggest that important characteristics of dispersal kernels will depend on the spatial pattern of plant distribution and on disperser density when frugivores mediate seed dispersal.  相似文献   

20.
A thorough understanding of communication requires an evaluation of both the signaler and receiver. Most analyses of prey–predator communication are incomplete because they examine only the behavior of the prey. Predators in these systems may be understudied because they are perceived as less tractable research subjects, due to their more cryptic hunting behaviors and secretive lifestyles. For example, research on interactions between rodents and rattlesnakes has focused on the behavior of rodent signalers, while responses of snakes have been virtually unexamined. Rattlesnakes are ambush predators, and capture rodents by waiting at foraging sites for long periods of time. In this study, I take advantage of the sedentary nature of this foraging strategy and use fixed videography to record natural encounters between timber rattlesnakes (Crotalus horridus) and their prey. Three different prey species were found to exhibit conspicuous visual displays to snakes, both when snakes were actively foraging, and when they were basking. After receiving displays, foraging snakes left their ambush sites and moved long distances before locating subsequent ambush sites, indicating that they responded to displays by abandoning attempts to ambush prey in the vicinity of signalers. This study represents the first quantitative analysis of the response of free-ranging snakes to signals from their prey, and elucidates a technique by which such quantitative data can be more easily obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号