首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
基于2001、2006年的TM/ETM遥感数据,利用像元二分模型,估算出不同时期内大山包黑颈鹤自然保护区的植被覆盖度,并对其变化进行了定量分析。结果表明,2006年较2001年的植被覆盖度呈增高趋势。植被覆盖度的变化与人类活动有密切关系,大山包黑颈鹤自然保护区核心区居民异地迁移工程以及国家级自然保护区的建立是大山包黑颈鹤自然保护区植被覆盖度增高的重要原因。  相似文献   

2.
福建省长汀县植被覆盖度遥感动态监测研究   总被引:24,自引:1,他引:24  
江洪  王钦敏  汪小钦 《自然资源学报》2006,21(1):126-132,166
遥感估算植被覆盖度的关键在于:一是植被指数的选择,二是植被指数转换方法。针对中国南方多山的特点,论文提出了能较好地削弱影像中山体阴影、土壤背景、岩石、建筑用地等地物对植被覆盖度信息干扰的复合植被指数V BSI;在植被指数转换方法上,采用混合像元法,对福建省长汀县1994年和2003年的遥感影像进行了植被覆盖度的估算。研究结果表明:采用VBSI进行植被覆盖度的估算,影像阴影信息的干扰作用可以被削减为NDV I的50%,基于VBSI的混合像元法估算植被覆盖度的总体精度达到80%以上;动态监测表明,从1994至2003年研究区高植被覆盖面积增加了150.47km2,占国土面积的比例提高了4.9个百分点,据调查,这与近年来长汀县加大水土流失治理力度有着重要关系。  相似文献   

3.
运用Landsat5/TM、Landsat7/ETM+和Landsat8/OLI传感器分别于2006、2010和2014年在准噶尔东部过境的影像数据经过影像校正后提取其NDVI,结合像元二分模型计算各年的植被覆盖度。基于ENVI和ArcGIS软件将植被覆盖度分等定级,分别分析荒漠区和绿洲植被的变化情况,计算各年间植被覆盖面积变化转移矩阵并参照历史气象数据和土地利用数据进行植被覆盖变化因素分析。2006-2014年研究区植被覆盖度连续降低,同一区域的植被斑块逐年破碎;植被覆盖Ⅰ级和Ⅴ级扩增速率分别达到平均每年0.33%和4.24%,Ⅱ、Ⅲ和Ⅳ级植被退缩速率分别为31%、19%、14%从2006-2014年整体表现为植被退化面积大于恢复面积并持续退化趋势。降水量和温度共同影响植被覆盖状况。研究区植被退化严重人为活动和恶劣的环境加速了其退化过程。  相似文献   

4.
呼伦贝尔草原植被覆盖度估算的光谱模型   总被引:1,自引:0,他引:1       下载免费PDF全文
采用美国ASD公司Fieldspec3光谱仪和日本富士数码相机,于2009年7~8月在内蒙古呼伦贝尔草原区进行了植物高光谱和植被覆盖度测定,并运用回归分析方法,建立实测归一化植被指数(ASD NDVI)和植被覆盖度之间的地面光谱模型,分析MODIS/TERRA卫星的NDVI(MODIS NDVI)与ASD NDVI的关系,建立预测植被覆盖度的MODIS光谱模型,并对模型进行精度检验.结果表明所建的MODIS光谱模型是线性函数,该模型预测精度高于亚像元分解模型,标准误差为11.58%,平均预测精度达到88.75%.  相似文献   

5.
高光谱植被覆盖度遥感估算研究   总被引:5,自引:8,他引:5  
以北京大学"无人机遥感载荷综合试验场"为试验区,采集草地植被覆盖度(Vegetation Cover, VC)和相应样方冠层高光谱反射率数据,并对比研究了高光谱反射率三种变换形式(小波能量系数、主成分和植被指数)与VC之间的关系模型。结果表明:在三种变换形式中,植被指数模型(R2大于0.8,RMSE小于等于0.018 8)优于基于小波变换和主成分分析的VC模型;经过对高光谱数据进行小波分解获得的第二和第四小波能量系数与VC之间存在显著的对数相关(R2分别为0.811和0813;RMSE分别为0.019 9和0.019 8);以多个小波能量系数作为自变量的VC多元回归模型明显优于基于主成分的多元线性回归,R2和RMSE分别提高0.058和0.030;将高光谱EVI模型与TM-EVI数据相结合生成的试验区VC空间分布总体上呈北部和南部植被覆盖度高(分别>75%和>55%),中部相对低(15%~55%)的特征,与其土地利用/覆被特征相吻合。  相似文献   

6.
基于青岛市崂山区1990、1997、2002、2008年四期TM遥感影像数据,利用遥感二分像元估算模型和归一化植被指数,定量研究了半城市化地区的植被覆盖度演化过程及其时空动态变化特征,结果表明:研究区植被覆盖度演变具有快速性、差异性和不稳定性特征;1990-1997年,植被平均覆盖度由48.71%下降到24.74%,是植被覆盖度下降最快时期;2002-2008年间,植被平均覆盖度由23.58%增加到44.49%,属于植被覆盖恢复时期。整体空间变化呈现分散和无序特征,地形因子显著影响植被覆盖度的分布及变化。从气候因素和人为活动影响两个方面分析了造成崂山地区植被覆盖度下降的原因,对降雨量与各地区植被覆盖度进行了相关性分析,划分出气候影响显著区域。最后通过主成份分析定量研究气候、人为因素对当地植被覆盖度的影响程度,结果发现城市化作用是造成植被覆盖度变化的主要因素。  相似文献   

7.
为揭示植被覆盖度时空动态变化及其与气候因子的相关关系,以2011年国务院印发的《国家主体功能区规划》中划定的防风固沙类型的阴山北麓草原生态功能区为研究区域,以MODIS长时间序列的植被指数产品为数据源,采用像元二分法、一元线性趋势法以及相关分析法等,对阴山北麓草原生态功能区植被覆盖时空变化及其与气温和降水的关系进行分析.结果表明:阴山北麓草原生态功能区植被覆盖较差,其中以察哈尔右翼中旗的植被覆盖度为最高,数值在30%~60%之间;乌拉特后旗植被覆盖度为最低,处于2.31%~8.89%之间.2000-2010年研究区植被覆盖整体呈波动下降趋势,以低等级(0~20%)和较低等级(20%~40%)为主,两等级面积占90%以上;处于高等级(60%~80%)和较高等级(80%~100%)水平的区域面积总和仅占研究区总面积的0.62%.2000-2010年植被覆盖度由高等级向低等级的转化趋势明显,植被退化面积占研究区总面积的53.4%,植被改善面积仅占1.63%,基本不变的区域占44.97%.相关分析显示,研究区植被覆盖度与同期降水响应关系良好,大部分区域二者呈正相关;植被覆盖度与同期气温关系不明显,大部分区域二者呈负相关,说明降水是影响阴山北麓草原生态功能区植被覆盖度变化的主要自然因素.   相似文献   

8.
通过对黄河上游及源区植被覆盖度遥感调查,分析植被覆盖度在垂直和水平才向上分布特征,指出植被退化的原因和易发部位,进而研究其对黄河生态环境的影响,结果表明:黄河现代河道及右河道附近为植被退化最易发生和黄河生态环境最脆弱地带,其丰富的沙源是沙漠化的物质基础,人类过牧引起植被覆盖度降低是沙漠化的主导因素。  相似文献   

9.
密云水库流域2000-2005年植被覆盖度变化监测   总被引:1,自引:0,他引:1  
植被是生态系统最重要的组成部分,而植被覆盖度是衡量地表植被状况的一个最重要的指标,是生态系统健康评价的前提和必要的基础。文章利用2000和2005年2个时相的Landsat 7 ETM+遥感影像为数据源,以BP神经网络法为植被覆盖度估算模型,计算了密云水库流域内不同时期的植被覆盖度,生成了该流域2个时相内的植被覆盖度图,以此分析密云水库流域植被覆盖度的时空变化。结果表明,从2000-2005年,密云水库流域内除无植被覆盖类型外(即水域部分),其余土地利用类型的植被覆盖度都呈增加趋势,其中以沙质地和耕地最为明显,分别增长了29.5%和27.3%,并且密云水库流域的平均植被覆盖度不高,尤其西部地区植被覆盖度较差,水土流失和土地沙化情况比较严重。  相似文献   

10.
北运河流域植被覆盖度变化及其生态环境质量评估   总被引:2,自引:0,他引:2  
北运河流域作为北京城市副中心建设涉及的重要自然地理单元,流域内人类活动剧烈,生态问题突出,植被覆盖率下降.基于植被覆盖度快速实现流域内生态环境质量的全面评价,是打造生态和谐宜居示范区的重要支撑,也是实现新时期首都生态文明建设的关键.本文选取1990年、2004年、2018年时相相近的3期Landsat TM/OLI数据,首先采用线性光谱混合模型进行植被覆盖度(FVC)的计算,再利用主成分分析法构建遥感生态指数(RSEI),并对二者时空变化规律及相关性进行探究.结果表明,1990—2018年,研究区平均植被覆盖度与遥感生态指数均呈现先增后减的趋势,植被覆盖度由0.36增长至0.43再降至0.41,遥感生态指数由0.545增加为0.584后又降至0.545.1990—2004年生态质量下降的区域集中分布在北京市主城区四周,环境质量改善的区域集中分布在北运河流域北部、中心城区及东南部,而2004—2018年生态质量下降的重点区域则向东南部流域下游转移,环境质量改善的区域则大面积减少.流域内生态质量保持稳定的区域大幅增加,生态质量差与较差区域占比连续降低,表明研究区大部分区域生态系统状况趋于稳...  相似文献   

11.
利用1994年5月12日与2009年6月6日的Landsat TM和2001年5月23日的Landsat ETM+卫星影像,选用遥感生态指数(RSEI),结合流域的植被覆盖度状况,定量评价了15年间敖江流域的生态环境变化与植被覆盖度变化情况,并对二者的关系进行了简要分析.结果表明:15年间,敖江流域生态等级为优所占的面积比例从13.48%上升到24.90%,增加了304.29 km2;植被覆盖度等级为极高的面积增加比例为29.31%.总体看来,敖江流域生态环境状况和植被覆盖状况均有明显的提高,两者具有较好的对应关系.  相似文献   

12.
随着3S技术的迅猛发展,用于地表遥感监测的卫星影像数据浩如烟海,而影像上地表植被长势等隐含信息的提取通常工作量大、耗费时间。论文提出了一种计算机自动提取地表植被物候信息的方法,主要用于对地表植被生长季及其年内长势进行快速提取。方法的基本原理是基于NDVI序列数据集,构建时间点对的时长跨度与该点对半方差的函数关系。选择东北松嫩平原地区作为重点试验区,计算了该区域1999—2013年地表植被生长季长度和长势特点,并选择东北地区物候观测数据进行验证分析。结果表明:1)东北地区农耕作物的生长季持续期在107~126 d左右。计算得到的结果与实测数据的最大误差在5 d值域范围内,沼泽植被在160 d以上(误差10 d左右),草地为120~139 d;2)研究区地表植被的生长盛期峰值出现在第150天前后。结果较为真实、合理地反映了研究区域地表植被的物候信息。  相似文献   

13.
基于植被指数和地表反照率影响的北京城市热岛变化   总被引:6,自引:2,他引:6  
利用TERRA/MODIS遥感反演的地表温度资料,对2000—2006年北京城市热岛季节变化特征进行了研究,结合同期降水量、植被指数和地表反照率变化,分析了该地夏季城市热岛的年际变化成因. 结果表明:北京多年四季热岛分布主要以城区为中心向周边郊区延伸,其中夏季城市热岛最强,春、秋和冬季较弱,这种热岛强度的季节性差异主要与太阳辐射强度、地表植被覆盖状况和城市人为热释放等的季节性变化密切相关. 北京夏季城市热岛的年际变化特征为:2005和2006年最显著,热岛中心强度分别为10.54和9.61 ℃;2002和2004年城市热岛最弱,热岛中心强度分别为6.54和7.39 ℃. 2000—2006年北京市夏季城市热岛具有明显增强趋势,热岛强度增温率为0.326 ℃/a. 北京夏季降水对城区地表温度影响大于郊区,降水主要通过影响城区地表温度来影响城市热岛变化;夏季地表植被和地表反照率变化对地表温度和城市热岛也均有较大影响. 2000年以来,北京郊区夏季地表植被指数增加率远高于城区,受地表植被和地表反照率变化的影响,郊区降温率明显大于城区,致使城郊温差增大,热岛效应加强.   相似文献   

14.
厦门海岸线遥感动态监测研究   总被引:2,自引:0,他引:2  
以厦门地区海岸影像为研究对象,根据不同海岸类型的地貌特点,采用不同的海岸线遥感解译方法提取出1987年、1997年和2007年的海岸线,并进行岸线变迁原因分析,研究结果表明:人工海岸、基岩海岸、砂质海岸及红土海岸的海岸线解译标志明显,提取效果较好,基本能够实现计算机自动提取;淤泥质海岸在遥感图像上呈现复杂的边缘,无理想的线性特征自动提取技术,是海岸线提取中的难点.  相似文献   

15.
基于遥感的青海省植被覆盖时空变化定量分析   总被引:8,自引:2,他引:6  
王莉雯  卫亚星  牛铮 《环境科学》2008,29(6):1754-1760
使用1km分辨率MODIS NDVI时间序列数据,采用决策树分类、监督分类和非监督分类相结合的综合分类方法,将青海省土地覆盖类型划分为14个类别.这种分类方法重点突出了植被,特别是稀疏植被(包括稀疏草地和稀疏灌丛)的空间分布.在将青海省分为5个高程带的基础上,使用GIS软件的空间分析功能,对青海省2001~2006年的地表植被覆盖在各级高程带上的空间分布和时间序列变化进行了定量分析.结果表明,近5a青海省的植被覆盖有所改善,植被覆盖面积从2001年的370047km2增加到2006年的374576km2,植被覆盖率增加了0.63%.青海省5级高程带中高山地带的植被覆盖率最高,达到67.92%.在青海省各级高程带上,高山地带上中覆盖度草地的分布面积最大,为94003km2.高山地带高覆盖度草地的面积增加最多,为1280km2.5a间植被覆盖变化最大的是高山地带上稀疏草地向中覆盖度草地的转变,转变面积达到15931km2.  相似文献   

16.
鄂尔多斯盆地植被覆盖动态监测与评价   总被引:3,自引:0,他引:3  
基于像元分解模型,利用LANDSATNDVI数据,估算了鄂尔多斯盆地2002年7月和2010年7月植被覆盖度,以量化和可视化的形式分析了鄂尔多斯盆地2002年一2010年间植被覆盖度的时空变化特征,探寻了引起植被覆盖度变化的驱动因素。结果表明:2002年一2010年鄂尔多斯盆地植被覆盖度变化明显,平均覆盖度增加了7.35%,改善和明显改善面积增加了35.67%,退化和明显退化面积增加了1.49%。研究区植被覆盖度增加的主要原因是降雨量的增加和一系列生态建设工程的实施;减少的主要原因是恶劣的生态环境和过度的能源开发活动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号