首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the possibility of re-using remediated soils for new bioremediation projects by spiking these soils with waste oil sludge in laboratory based microcosms. The level of Total Petroleum Hydrocarbon (TPH) reduction was high (>80%) in naturally attenuated microcosms and was not significantly improved by biostimulation, bioaugmentation and the combined treatment of bioaugmentation and biostimulation by week 12. This indicated that the observed TPH reduction might have been related to the soil's inherent hydrocarbon-degrading potential. Microbial community analysis (16S rDNA and ITS-based Denaturing Gradient Gel Electrophoresis fingerprints) confirmed the dominance of hydrocarbon degrading genera such as Alcanivorax and Scedosporium. Cluster and Shannon diversity analysis revealed similar but stable bacterial and fungal communities in naturally attenuated and amended microcosms indicating that rapid reduction in TPH may not always be accompanied by changes in soil microbial communities. This study has therefore shown that soils previously used for bioremediation can have an improved hydrocarbon degrading potential which was successfully re-harnessed for new projects. This ability to re-harness this potential is attractive because it substantially reduces operational costs as no additional bioremediation treatments are needed. It can also extend a landfill's lifespan as soils can be re-used again before landfill disposal.  相似文献   

2.
The current study reports on operational and performance aspects of a land treatment facility for managing oily wastes generated from heavy vehicle maintenance over a 5-year period. Samples of soil and groundwater from the land treatment plots were analyzed for a range of contaminants and microorganisms over this period. The soil analyses indicated that the process has been operating efficiently even at high wastewater loadings with maximum degradation rates of 250 mg/kg per day (year 1) and average rates of 10–35 mg/kg per day (years 2–5). Hydrocarbon degraders comprised more than 80% of the total (measured) soil heterotrophic population and were present at 106–108 (per gram soil) once the process was optimized. The facility was capable of treating 140 kl of oily wastewater per day (average petroleum hydrocarbon content of 2% w/v) over the entire period. During this time there was no evidence of accumulation of any major metals or polycyclic aromatic hydrocarbon (PAH) compounds in the soil. Groundwater sampling and analysis indicated that the land treatment facility was not leading to contamination of any groundwater taken from bores in the vicinity of the facility. The land treatment process continues to be effective for treatment of non-volatile waste oils at this remote and high evaporation (arid) site.  相似文献   

3.
In order to improve the oil recovery, injection of exogenous bacteria into the oil reservoir is one of the most widely used microbial flooding methods. In this study, a screened strain of Bacillus subtilis (B. subtilis) was introduced to perform the microbial flooding. The biosurfactants produced by B. subtilis was one kind of cyclic lipopeptides, which could reduce the surface tension of the culture solution from 68 mN/m to 25 mN/m and also decrease the interfacial tension of water/oil from 25.6 to 4.6 mN/m. Emulsification tests indicated that the strain and the biosurfactants could degrade and emulsify the crude oil. In the oil displacement experiments, oil recovery was increased by 32.4% by injecting fermentation broth into the simulated formation. By respectively performing the emulsification and oil displacement tests, it was demonstrated that the biosurfactants and degradation of the microbes in the heavy components of the crude oil are the main factors to enhance the oil recovery. Besides, the optimal cultural temperature for strain of B. subtilis was set as 40°C. Nevertheless, the strain was inappropriate for the oil displacement under acidic conditions. In addition, the hydrophilic sands and an optimal culture solution volume of 0.7 pore volume (PV) would be in favor of the oil recovery. It was further confirmed that the efficiency of microbial flooding was much higher than that of the chemical oil displacement.  相似文献   

4.
Herbicide contamination from agriculture is a major issue worldwide, and has been identified as a threat to freshwater and marine environments in the Great Barrier Reef World Heritage Area in Australia. The triazine herbicides are of particular concern because of potential adverse effects, both on photosynthetic organisms and upon vertebrate development. To date a number of bioremediation strategies have been proposed for triazine herbicides, but are unlikely to be implemented due to their reliance upon the release of genetically modified organisms. We propose an alternative strategy using a free-enzyme bioremediant, which is unconstrained by the issues surrounding the use of live organisms. Here we report an initial field trial with an enzyme-based product, demonstrating that the technology is technically capable of remediating water bodies contaminated with the most common triazine herbicide, atrazine.  相似文献   

5.
Bioremediation of a heavy metal-polluted soil was investigated in a 3-yr field experiment by adding mulch to a polluted forest floor. The mulch consisted of a mixture of compost and woodchips. The remediation treatment decreased the toxicity of the soil solution to bacteria as determined by the [3H]-thymidine incorporation technique, that is, by measuring the growth rate of soil bacteria extracted from unpolluted humus after exposing them to soil solution containing heavy metals from the experimental plots. Canonical correlation analysis was performed in order to identify the chemical and microbiological changes in the soil. The pH of the mulched organic layer increased by one unit. The concentration of complexed Cu increased and that of free Cu2+ decreased in the soil solution from the mulch treatment. According to basal respiration and litter decomposition, microbial activity increased during the 3 yr following the remediation treatment. The [3H]-thymidine incorporation technique was also used to study the growth rate and tolerance of bacteria to Cu. The bacterial growth rate increased and the Cu tolerance decreased on the treated plots. The structure of the microbial community, as determined by phospholipid fatty acid (PLFA) analysis, remained unchanged. The results indicate that remediation of the polluted soil had occurred, and that adding a mulch to the forest floor is a suitable method for remediating heavy metal-polluted soil.  相似文献   

6.
Soil artificially contaminated with diesel oil, treated with cassava steep liquor (CSL) and designated EXPS. Similar polluted soil without CSL amendment (CSS1) and uncontaminated soil (CSS2) served as controls. There were dramatic changes in the physico-chemistry of systems EXPS and CSS1 with utilization of the inorganic nutrients to near-depletion in the former than the latter. In contrast, the properties of CSS2 remained relatively stable throughout the investigated period. Similarly, the population densities of microflora in the polluted soils showed an initial decrease between days 0 and 5 before assuming an increasing trend with percent hydrocarbon-utilizers ranging significantly (P < 0.05) from 0.56 to 6.6, 0.1 to 2.46 and 0.56 to 0.26, respectively for EXPS, CSS1, and CSS2. In EXPS, the residual oil decreased from 98,045 to 1,102.3 mg/kg soil at day 35 representing about 98.88% degradation. The corresponding value for CSS1 was 98,106.1 to 52,110 mg/kg soil, amounting to 46.88% oil disappearance. The GC fingerprints of alkane fractions of the recovered oil reduced significantly by day 15 for EXPS with near-similar results of CSS1. However, by day 35, there was complete disappearance of all peaks including the pristane and phytane molecules in the former whereas in CSS1, there were no observable changes. The germination and growth profiles of maize seed plants as evidence of recovery of oil-impacted soils were poor in CSS1 (10%) with pronounced abnormal morphology when compared with the data obtained for EXPS (74%) and CSS2 (80%). These results suggest that CSL could be an indispensable tool in bioremediation of environments contaminated with hydrocarbons. The technology of application is simple, rapid and cost-effective and may be appropriate for use in developing countries to ameliorate the problems of petroleum pollution.  相似文献   

7.
An environmentally benign, simple, and efficient process has been developed for biodiesel production from waste olive oil in the presence of a catalytic amount of TiO2 nanoparticles at 120°C with a conversion of 91.2% within 4 h. The present method affords nontoxic and noncorrosive medium, high yield of biodiesel, clean reaction, and simple experimental and isolation procedures. The catalyst can be recycled by simple filtration and reused without any significant reduction in its activity.  相似文献   

8.
Heap leaching is an effective and widely used method of recovering metals from low-grade ores. However, the heap leaching technique has not yet been used in other biotechnological processes such as bioremediation. This work describes biostimulation of the native microbial consortium as a novel application of the heap leaching technique to bioremediate mining soils contaminated with hydrocarbons. Microorganisms present in the polluted soil were isolated in a liquid mineral solution using diesel fuel as the sole energy and carbon source. Biodegradation activity was evaluated and two genera, Flavobacterium and Aspergillus, were identified as the primary microorganisms that degraded hydrocarbons in the polluted soil. In order to simulate the heap leaching process on a laboratory scale, using both columns and piles, the contaminated soil was mixed with different sand concentrations and was agglomerated before it was used. Three flow rates, of the mineral solution, were evaluated. Of the rates tested, biodegradation was most efficient at a flow rate of 200 ml h(-1). The heap leaching technique demonstrated good efficiency in the column and pile, with a 2% soil-sand mixture lowering the TPH concentration from 61,000 to 1800 mg kg(-1) (98.5%) in 15 d.  相似文献   

9.
Accelerated erosion and increased sediment yields resulting from changes in land use are a critical environmental problem. Resource managers and decision makers need spatially explicit tools to help them predict the changes in sediment production and delivery due to unpaved roads and other types of land disturbance. This is a particularly important issue in much of the Caribbean because of the rapid pace of development and potential damage to nearshore coral reef communities. The specific objectives of this study were to: (1) develop a GIS-based sediment budget model; (2) use the model to evaluate the effects of unpaved roads on sediment delivery rates in three watersheds on St. John in the US Virgin Islands; and (3) compare the predicted sediment yields to pre-existing data. The St. John Erosion Model (STJ-EROS) is an ArcInfo-based program that uses empirical sediment production functions and delivery ratios to quantify watershed-scale sediment yields. The program consists of six input routines and five routines to calculate sediment production and delivery. The input routines have interfaces that allow the user to adjust the key variables that control sediment production and delivery. The other five routines use pre-set erosion rate constants, user-defined variables, and values from nine data layers to calculate watershed-scale sediment yields from unpaved road travelways, road cutslopes, streambanks, treethrow, and undisturbed hillslopes. STJ-EROS was applied to three basins on St. John with varying levels of development. Predicted sediment yields under natural conditions ranged from 2 to 7Mgkm(-2)yr(-1), while yield rates for current conditions ranged from 8 to 46Mgkm(-2)yr(-1). Unpaved roads are estimated to be increasing sediment delivery rates by 3-6 times for Lameshur Bay, 5-9 times for Fish Bay, and 4-8 times for Cinnamon Bay. Predicted basin-scale sediment yields for both undisturbed and current conditions are within the range of measured sediment yields and bay sedimentation rates. The structure and user interfaces in STJ-EROS mean that the model can be readily adapted to other areas and used to assess the impact of unpaved roads and other land uses sediment production and delivery.  相似文献   

10.
Arsenic remobilization in a shallow lake: the role of sediment resuspension   总被引:1,自引:0,他引:1  
Oxic resuspension occurs regularly in shallow lakes, yet its role as a mechanism for contaminant remobilization remains ill defined. This study investigated contaminant remobilization during sediment resuspension and determined whether changes in contaminant sediment partitioning reflected the mechanisms controlling remobilization. Arsenic-contaminated sediment from a shallow wetland was subjected to simulated resuspension under a range of differing initial pH conditions. The effect of resuspension on As partitioning was evaluated using a fractionation scheme targeting the dissolved, ion exchangeable, carbonate, organic, amorphous iron oxide, crystalline iron oxide, and apatite fractions. Rate investigations demonstrated that arsenic remobilization occurred on timescales similar to resuspension events, with concentrations reaching steady state within 24 h. The sediment also buffered slurry pH to 8.3 in experiments where the initial pH was between 4 and 10. This pH regulation was attributed to carbonate dissolution or acid-base equilibria of surface base functional groups, although iron oxide and organic matter dissolution did occur in experiments with an initial pH outside this range. Remobilization caused losses in arsenic associated with the ion exchangeable, organic, and amorphous iron fractions but changes in initial pH have a negligible effect on arsenic remobilization or partitioning within the well-buffered region. Resuspension released approximately 20% of the total sediment arsenic, although calculations indicated that a single resuspension event would not significantly change water column arsenic concentrations. While not conclusively proving the mechanisms of remobilization, fractionation gave valuable insight into the effect of sediment resuspension on contaminant remobilization.  相似文献   

11.
Distillery effluent can be converted into biogas and the residue can be utilized as a fertilizer if it is detoxified. Several nitrifying bacteria were screened for detoxification of distillery effluent rich in chloride, nitrogen compounds, free ammonia and monovalent cations. Nitrosococcus oceanus collected from a brackish water lake (Chilka, Orrisa) was noticed to be a potential candidate for detoxification of distillery effluent. The detoxified distillery effluent was used in rice plant culture. The growth and development of rice plants was examined in terms of DCPIP—Hill activity, total carbohydrate, total protein and biomass of rice plants. The detoxified effluent-treated rice plants showed better growth and development as compared with control plant grown in full nutrient solution (Hoagland solution).  相似文献   

12.
Fecal bacteria have traditionally been used as indicator organisms to monitor the quality of recreational waters. Recent work has questioned the robustness of traditional indicators, particularly at seawater bathing beaches. For example, a study of Florida beaches found unexpectedly high abundances of Escherichia coli, fecal coliforms, and enterococci in beach sand. The aim of the present study was to explain these abundances by assessing the survival of E. coli and enterococci in beach sand relative to seawater. We used a combination of quantitative laboratory mesocosm experiments and field observations. Results suggested that E. coli and enterococci exhibited increased survivability and growth in sand relative to seawater. Because fecal bacteria are capable of replicating in sand, at least under controlled laboratory conditions, the results suggest that sand may be an important reservoir of metabolically active fecal organisms. Experiments with "natural" mesocosms (i.e., unsterilized sand or water rich in micropredators and native bacteria) failed to show the same increases in fecal indicators as was found in sterile sand. It is postulated that this was due to predation and competition with indigenous bacteria in these "natural" systems. Nonetheless, high populations of indicators were maintained and recovered from sand over the duration of the experiment as opposed to the die-off noted in water. Indicator bacteria may wash out of sand into shoreline waters during weather and tidal events, thereby decreasing the effectiveness of these indicators as predictors of health risk and complicating the interpretations for water quality managers.  相似文献   

13.
生物技术在油气田环境污染治理中的应用   总被引:1,自引:0,他引:1  
介绍了生物技术及其在环境污染治理中的应用状况,根据我国油气田环境污染治理现状,提出了生物技术在我国油气田环境污染治理中重点研究的方向和步骤以及应用前景。  相似文献   

14.
Nutrient amendment to oil-contaminated beach sediments is a critical factor for the enhancement of indigenous microbial activity and biodegradation of petroleum hydrocarbons in the intertidal marine environment. In this study, we investigated the stimulatory effect of the slow-release fertilizers Osmocote (Os; Scotts, Marysville, OH) and Inipol EAP-22 (Ip; ATOFINA Chemicals, Philadelphia, PA) combined with inorganic nutrients on the bioremediation of oil-spiked beach sediments using an open irrigation system with artificial seawater over a 45-d period. Osmocote is comprised of a semipermeable membrane surrounding water-soluble inorganic N, P, and K. Inipol, which contains organic N and P, has been used for oil cleanup on beach substrate. Nutrient concentrations and microbial activity in sediments were monitored by analyzing sediment leachates and metabolic dehydrogenase activity of the microbial biomass, respectively. Loss of aliphatics (n-C12 to n-C33, pristane, and phytane) was significantly greater (total loss between 95 and 97%) in oil-spiked sediments treated with Os alone or in combination with other nutrient amendments, compared with an unamended oil-spiked control (26% loss) or sediments treated with the other nutrient amendments (28-65% loss). A combination of Os and soluble nutrients (SN) was favorable for the rapid metabolic stimulation of the indigenous microbial biomass, the sustained release of nutrients, and the enhanced biodegradation of petroleum hydrocarbons in leached, oil-contaminated sediments.  相似文献   

15.
Institutional work offers a promising lens for understanding institutional change, focusing on the efforts of actors in creating, maintaining or disrupting institutions. In this paper, we explore the capacity of a narrative approach to provide insights on institutional work, using a case study from the coast of Sweden. We identify four narratives that compete in the policy discourse regarding erosion and beach nourishment in the coastal province of Scania. The narratives reveal that actors hold different beliefs concerning the magnitude of the erosion problem, the division of responsibilities and the suitability of sand nourishment as a coastal protection measure. The narrative competition is considered reflective of past institutional discussions and ongoing institutional work in coastal management in Scania, confirming that narratives are used as sense-making and meaning-giving devices in institutional discussions.  相似文献   

16.
Microbial biodegradation of polycyclic aromatic hydrocarbons (PAHs) during the process of bioremediation can be constrained by lack of nutrients, low bioavailability of the contaminants, or scarcity of PAH-biodegrading microorganisms. This study focused on addressing the limitation of nutrient availability for PAH biodegradation in oil-contaminated beach sediments. In our previous study, three nutrient sources including inorganic soluble nutrients, the slow-release fertilizer Osmocote (Os; Scotts, Marysville, OH) and Inipol EAP-22 (Ip; ATOFINA Chemicals, Philadelphia, PA), as well as their combinations, were applied to beach sediments contaminated with an Arabian light crude oil. Osmocote was the most effective nutrient source for aliphatic biodegradation. This study presents data on PAH biodegradation in the oil-spiked beach sediments amended with the three nutrients. Biodegradation of total target PAHs (two- to six-ring) in all treatments followed a first-order biodegradation model. The biodegradation rates of total target PAHs in the sediments treated with Os were significantly higher than those without. On Day 45, approximately 9.3% of total target PAHs remained in the sediments amended with Os alone, significantly lower than the 54.2 to 58.0% remaining in sediment treatments without Os. Amendment with Inipol or soluble nutrients alone, or in combination, did not stimulate biodegradation rates of PAHs with a ring number higher than 2. The slow-release fertilizer (Os) is therefore recommended as an effective nutrient amendment for intrinsic biodegradation of PAHs in oil-contaminated beach sediments.  相似文献   

17.
The steadily increasing world market prices for fossil fuels in the past years have significantly increased interest in the development of indigenous sources of energy in the Pacific islands. As an import substitution strategy, many Pacific island Governments are looking into the use of local biomass resources to replace traditionally imported fuels such as petrol and diesel by biofuels. An overview of biofuel activities is given, with experiences and key achievements in Fiji, Samoa, Vanuatu, Solomon Islands, Papua New Guinea, Kiribati and Marshall Islands with regard to efforts to develop alternative fuels. There are strong linkages between developments in the various Pacific island countries and lessons to be learned from experiences and policies implemented among Governments in the Pacific region. The paper concludes that there is a need for standardization, quality control and testing facilities for biofuels in the region. Governments need to investigate further the level of support that is required to make biofuel operations viable and maximize macroeconomic and environmental benefits.  相似文献   

18.
Stormwater management infrastructure is utilized in urban areas to alleviate flooding caused by decreased landscape permeability from increased impervious surface cover (ISC) construction. In this study, we examined two types of stormwater detention basins, SDB-BMPs (stormwater detention basin-best management practice), and SDB-FCs (stormwater detention basin-flood control). Both are constructed to retain peak stormwater flows for flood mitigation. However, the SDB-BMPs are also designed using basin topography and wetland vegetation to provide water quality improvement (nutrient and sediment removal and retention). The objective of this study was to compare SDB (both SDB-BMP and SDB-FC) surface soil P concentrations, P saturation, and Fe chemistry with natural riparian wetlands (RWs), using sites in Fairfax County, Virginia as a model system. The SDB-BMPs had significantly greater surface soil total P (P(t)) concentrations than the RWs and SDB-FCs (831.9 +/- 32.5 kg ha(-1), 643.3 +/- 19.1 kg ha(-1), and 652.1 +/- 18.8 kg ha(-1), respectively). The soil P sorption capacities of SDB-BMPs were similar to the RWs, and were greater than those of SDB-FCs, appearing to result in greater soil P removal and retention in SDB-BMPs compared with SDB-FCs. Increased Fe concentrations and relatively greater amounts of more crystalline forms of Fe in SDB-BMP soils suggested increased sediment deposition compared with RW and SDB-FC soils. Data suggest that SDB nutrient and sediment retention is facilitated in SDB-BMPs. When stormwater management is necessary, use of SDB-BMPs instead of SDB-FCs could foster more responsible urban development and be an appropriate mitigation action for receiving aquatic ecosystems.  相似文献   

19.
通过室内和现场试验表明,自然除油。混凝除油-压力过滤流程是适合百色油田含油污水处理的,通过投加混凝剂PAC-4(加入量为30~50mg/L时),污水处理即可达到石油开发工业污水排放标准(COD除外),从而减轻和防止了对周围环境的污染,同时进一步处理后可作为油田回注地层水。  相似文献   

20.
Both sediment and phosphorus (P) are important contaminants for surface water quality. Knowing the main sources of sediment and P loss within agricultural catchments enables mitigation practices to be better targeted. With this in mind seasonal loads of suspended sediment (SS), dissolved reactive P (DRP), total P (TP), and bioavailable P (BAP) were measured in a low gradient stream draining an intensively farmed New Zealand dairying catchment. Integrating in situ samplers were deployed to collect samples and the results merged with continuous flow data to calculate seasonal loads during 2005 through 2006. Flow rate, SS, and TP concentrations peaked in winter-spring and were lowest in summer-autumn. Concentrations of BAP in trapped sediment were greatest in autumn, contrasting with winter and spring when greater amounts of sediment were trapped, but with lower P enrichment. Analysis of (137)Cs and mixing model output showed that a major source of sediment and associated P in winter and spring was stream banks. Possible causes for this include trampling and destabilization by stock, channel straightening and sediment removal, and removal of riparian trees that stabilize banks. Modelling indicated that overland flow probably from topsoil (but could include sediment from lanes) contributed most sediment during summer and autumn. Remediation aimed at decreasing particulate P inputs to streams should focus on riparian protection measures, such as permanent stock exclusion and planting with shrubs and trees, ensuring runoff from lanes is minimized, and decreasing Olsen P to nearer optimum agronomic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号