首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
有害物质泄漏扩散的数值模拟   总被引:5,自引:1,他引:5  
有害物质泄漏是一种常见事故.利用高斯公式和三维有限元建立有害物质泄漏扩散数学模型,估测有害物质泄漏扩散的危害范围和泄漏物质扩散过程中浓度的大小,相应的数学模型可作为泄漏事故安全保障工作中预防为主的科学依据,从而为可能发生的事故进行预测预警.  相似文献   

2.
随着含硫天然气藏的勘探与开发,井喷后硫化氢扩散的研究显得非常重要.通过查阅大量文献资料,从井喷后硫化氢扩散数值模拟的不同模型入手,对箱及相似模型、API模型、浅层模型、高斯烟羽模型和CFD模型进行了阐述和分析,对比了各类模型的基本原理和优缺点,指出了硫化氢数值模拟的研究方向和完善措施.  相似文献   

3.
针对科学、准确、动态研判气体泄漏演变情景难的问题,通过重构化工企业厂区的三维模型,采用计算流体动力学(Computational Fluid Dynamics,CFD)模型数值模拟方法,预演、分析气体扩散的路径、范围、浓度分布变化情况,并进行可视化。以福建省某化工厂为例,利用倾斜摄影影像数据建立化工厂区域内的建筑物三维模型,使用计算流体动力学开源软件OpenFOAM,对三维空间进行剖分生成计算域网格,采用三维Navier-Stokes方程作为控制方程,选用标准k-雷诺时均模型用于求解湍流效应,采用压力的隐式分割算法(Pressure Implicit with Splitting of Operations,PISO)计算流场,假设氯气在三维空间中某处发生泄漏,模拟了不同风速条件扩散浓度分布情况,实验结果表明:氯气的扩散轨迹受风场和建筑物布局影响较大,风速增大会加速氯气的扩散,有利于氯气污染物的稀释;建筑物会阻碍氯气的扩散,同时受湍流效应影响,氯气易在建筑物之间的街道聚集,浓度稀释较为缓慢。模拟结果可为制定应急预案和预案演练提供参考。  相似文献   

4.
重气泄漏扩散事故是经常发生且危害较大的一种事故形式 ,由于重气的密度大于空气 ,因此重气往往沿地面扩散 ,泄放物质进入人体将引起中毒事故 ,若泄放物质被点燃或引爆将引起大规模的燃烧爆炸事故。本文给出了描述重气扩散过程的数值模拟模型及计算方法 ,并采用本文提出的模型和算法 ,对ThorneyIslandTrial008实验进行了数值模拟 ,模拟结果与实验结果符合较好 ,说明本文提出的模型和算法是适用的。  相似文献   

5.
于力  柴建设  史强 《安全》2013,34(3):5-8
本文使用FLUENT建立一套室内中压输气管道泄露模型,研究天然气扩散规律,并讨论了室内浓度场随时间的变化以及不同因素对空间的浓度影响。  相似文献   

6.
可爆性气体泄漏扩散时均湍流场的数值模拟   总被引:15,自引:0,他引:15  
本介绍了一种基于κ—ε湍流模型的研究可爆性气体泄漏扩散的三维数值模拟方法。中对乙炔气体扩散试验的风场和质量浓度场进行了数值模拟,并将质量浓度场的数值模拟结果与风洞试验数据进行了比较。模拟结果与试验数据吻合得很好,从而验证了本数值模拟方法的有效性。  相似文献   

7.
重气扩散的数值模拟   总被引:18,自引:5,他引:18  
易燃易爆有毒物质泄漏事故常形成比空气重的气云 ,国外已开发了大量不同复杂程度的重气扩散模型 ,其中数值模拟已成为快速发展的领域。本文综述了重气扩散的湍流模型 ;还描述了数值模拟的计算方法及其准确性 ;最后分析了目前存在的问题 ,提出了今后的发展方向。  相似文献   

8.
燃料车内氢气泄漏扩散数值模拟研究   总被引:4,自引:2,他引:2  
基于FULUENT软件的物质传输与反应模块,建立了燃料车内氢气泄漏扩散的数值计算模型.应用模型对储气瓶不同位置的泄漏扩散进行了数值计算,得到了氢气在车内泄漏扩散后的危险区域分布情况.结果表明:氢气瓶上方挡板位置是氢气泄漏扩散后的高浓度区域,泄漏后的氢气在该处容易发生积聚.研究结论可以为车内预警用氢气监测传感器的放置以及氢燃料车的安全设计提供参考.  相似文献   

9.
烟气扩散的CFD数值模拟   总被引:20,自引:1,他引:20  
运用商业CFD软件Fluent模拟计算小尺寸下的简单烟气扩散规律.将结果用正态分布假设下的高斯烟羽模型验证.证明该软件模拟烟气扩散问题的可行性.  相似文献   

10.
重气扩散的数值模拟模型验证   总被引:7,自引:0,他引:7  
重气泄漏扩散事故是经常发生且危害较大的一种事故形式,由于重气的密度大于空气,理气往往沿地面扩散,泄放物质进入人体将引起中毒事故,若泄放物质被点燃或引爆将引起大规模的燃煤爆炸事故。本文给出了描述重气扩散过程的数值模拟模型及计算方法,并彩用本文提出的模型和算法。对Thorney Island Trial 008实验进行数值模拟,模拟结果与实验结果符合较好,说明本文提出模型和算法是适用的。  相似文献   

11.
针对立井爆破开挖扰动下冻结管损伤测试的难题,以兖矿集团万福矿风井掘进工程为背景,采用数值模拟方法建立合理的物理模型,施加等效载荷实现了立井爆破冻结管的响应振速特征提取。通过损伤概率诊断方法,获取了冻结管不同方位的损伤概率分布情况。结果表明:冻结管在不同方向损伤概率具有显著差异,在同一爆心距处损伤概率大小表现为迎爆面中心垂直面中心背爆面中心。影响冻结管性能的振速值均大于8 cm/s,冻结管周围1.5 m范围内迎爆侧是围岩损伤监测和控制的重点区域。  相似文献   

12.
对苯在大气中的扩散进行数值模拟,估测泄漏气体污染范围、各阶段苯的泄漏速率,以及发生池火灾时热辐射的危害范围等,量化了大气温度、地面风速、地面粗糙度(地形、建筑因素)等环境因素对不同危险性级别区域分布的影响,得到了苯扩散距离随大气温度、地面风速以及地面粗糙度(地形、建筑因素)的变化曲线,探讨了在不同环境因素作用下苯的大气扩散规律,并对研究结果进行分析。  相似文献   

13.
通过采用LS-DYNA动力学有限元程序,模拟210 m钢筋混凝土烟囱的控制爆破拆除倒塌过程。采用数值模拟方法,不仅可以对控制爆破拆除工程中构筑物倾倒、破坏的重要影响因素进行分析,对有关理论研究结果的正确性和有效性进行验证,还能优化爆破拆除方案、预测实际爆破拆除效果,提高爆破拆除设计与施工的经济性、可靠性和安全性。  相似文献   

14.
含硫天然气泄漏扩散是一个非常复杂的扩散过程,它受复杂地形空间、不同风向、风速等各种条件的影响。为此,采用可行的计算流体动力学(CFD)对这一过程进行了三维数值模拟,根据龙岗001-81井含硫天然气泄漏扩散事故现场,利用ArcGIS软件提取该井周围2 500 m范围内的地形数据建立计算域物理模型,模拟了在多种工况下(不同地形、风向、风速)含硫天然气的扩散规律,对扩散结果进行规律性总结。  相似文献   

15.
高压管道天然气泄漏扩散过程的数值模拟   总被引:3,自引:2,他引:3  
采用CFD模型的方法对高压管道内的天然气泄漏和扩散过程进行了数值模拟。其结果表明,从高压管道泄出的天然气在大气中主要表现为高速射流的泄漏过程和随后的扩散过程。在泄漏过程中,天然气在泄漏口附近为欠膨胀射流,整个泄漏过程具有一定的高度;在扩散过程中,天然气在浮力作用下以向上扩散的形式发展。研究了不同环境风速对扩散过程的影响,较大的风速可以使天然气向下风方向更远的距离扩散,从而增大了天然气爆炸危险浓度的范围。研究结果可  相似文献   

16.
氢能是有发展前景的新型能源之一,氢气的安全储存是氢能应用必须解决的问题。本文建立了基于大容量金属储氢装置的室内氢气泄漏扩散模型,利用计算流体力学软件FLUENT,对室内储氢罐的泄漏扩散过程进行数值模拟,得到了氢气泄漏扩散的速度分布、浓度分布。分析数值模拟结果,得出在该模拟条件下,氢气泄漏时的流动状态为射流湍流;泄漏后上浮扩散,空间密闭时积累于室顶;通风条件下大部分区域的氢气浓度仍然高于安全限值。通过数值模拟,总结出氢气在室内环境下的泄漏扩散规律,可为氢气泄漏事故的处理消防安全设置提供依据。  相似文献   

17.
采用FLUENT软件,选择SPMPLES算法,建立车载LNG储气瓶辅助安全阀开启时天然气扩散的预测模型.模拟了两种风速条件下,低温天然气扩散在大气中的浓度分布和温度分布.根据计算结果分析了扩散形成危险区域与风速的关系,为在紧急情况下LNG储气瓶辅助安全阀开启后天然气扩散制定救援措施提供理论参考.  相似文献   

18.
19.
在利用FLUENT软件建立三维输移扩散模型的基础上,针对不同疏浚期,构建了汛期疏浚、旱期疏浚两种施工方案下的三维数学模型;对不同施工方案下的泥沙悬浮扩散范围及浓度分布进行模拟预测,得出了2种方案下泥沙悬浮扩散规律;对各种施工方案下对施工区域水体环境的影响进行分析比较,发现旱期疏浚对水体环境的整体影响小于汛期疏浚。  相似文献   

20.
由于丙烷气体具有易燃易爆的危险性,不宜采用试验研究.二氧化碳与丙烷在标准状况下密度相当,同属于重气,因此,在研究中拟用二氧化碳代替丙烷.首先利用Fluent对扇形水幕抑制二氧化碳的扩散进行了数值模拟,模拟所设定的参数均与试验相同,在与试验数据进行对比后验证了Fluent模拟重气扩散的有效性及可行性.然后利用Fluent对水幕抑制丙烷扩散进行了数值模拟,从模拟过程中得出,水幕产生的阻挡作用、机械湍流作用及造成的空气卷吸作用对丙烷的扩散起到很好的抑制效果.通过设置不同水幕压力和泄漏源与水幕之间的距离,对其影响扇形水幕抑制丙烷扩散的效果进行了数值模拟,结果表明扇形水幕压力越大抑制效果越好、水幕距泄漏源距离越近抑制效果越好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号