首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究煤矿开采钻进过程中构造煤瓦斯涌出量随钻进深度的变化特性,以薛湖煤矿2104运输巷掘进工作面为试验研究对象,采用自主研制的连续流量法预测系统中瓦斯流量情况,测定钻孔瓦斯涌出量及钻进深度数据;根据初始瓦斯涌出量变化趋势,预测钻孔前方构造煤的位置。研究结果表明:在原生结构煤体中钻进时,钻孔瓦斯涌出量随钻进深度增加而增大,钻孔瓦斯涌出曲线平稳;钻进到构造煤时,钻孔瓦斯涌出量迅速增加、曲线变陡;钻进为9. 9 m时,钻孔瓦斯涌出量出现突变点; 10. 2 m时,瓦斯涌出量达到最大值,为89. 9 L/min,是正常值的2. 05倍;以3号钻孔为例,采掘活动验证了该预测方法的准确性和精度。  相似文献   

2.
可压密煤层瓦斯运移方程与数值模拟研究   总被引:3,自引:1,他引:2  
建立了非均质可压密煤层瓦斯运移方程和数值模拟方程,通过计算机数值模拟解,并运用相似理论,得到了煤层瓦斯压力分布曲线和煤(孔)壁瓦斯涌出衰减曲线方程。采掘面围岩中的集中应力峰值点存在高瓦斯压力和压力梯度,克林伯格效应和煤体排放瓦斯后的应力释放对钻孔瓦斯流量有明显的增长作用  相似文献   

3.
灰色组合模型在钻孔瓦斯流量预测中的应用   总被引:1,自引:0,他引:1  
钻孔瓦斯流量直接关系着钻孔抽放煤层瓦斯涌出量及钻孔瓦斯涌出初速度的判定,因此研究钻孔瓦斯流量的变化及发展趋势具有较大实用价值。利用"灰色组合预测"思想,提出一种对多种常用预测模型进行熵权法计算权重的组合预测方法,从而可根据有限的实测数据达到预测瓦斯流量发展的目的,结合工程实例,将灰色组合预测模型和单点模型模拟的结果进行比较,其结果表明组合的灰色模型预测精度较高,对瓦斯抽放设计和矿井安全生产具有较大的指导意义。  相似文献   

4.
为探究水力切槽对钻孔瓦斯抽采的影响,基于钻孔瓦斯渗流与切槽增渗机制理论分析,设计井下现场试验,考察切槽钻孔瓦斯涌出速度、累计涌出量及其周围瓦斯压力变化特征,并根据瓦斯涌出速度反演讨论水力切槽煤体渗透率变化过程及其影响因素。结果表明:受切槽周围应力演化、煤体力学行为以及煤层压力水等因素影响,切槽钻孔瓦斯涌出速度总体上呈快速衰减、缓慢衰减、小幅度升高再衰减、大幅度升高4个阶段变化,在切槽作业约40天后,钻孔瓦斯涌出速度开始大幅升高;切槽孔周围瓦斯压力下降率总体上呈远离切槽孔而减小的趋势,切槽煤体渗透率呈先降低后小幅升高再大幅升高的变化趋势,渗透率与周围煤层瓦斯压力呈负相关性,反演分析结果与现有模拟结论相一致。  相似文献   

5.
研究钻孔瓦斯流量的变化及其变化趋势对抽采煤层瓦斯涌出量及钻孔瓦斯涌出初速度等参量的判定具有较大的实用价值。笔者将煤层抽采瓦斯钻孔看作一个灰色系统,利用灰色系统理论,以原始时间序列数据为基础,建立抽采瓦斯钻孔流量的模拟和预测GM(1,1)模型。针对数值模拟中大量的矩阵计算,利用MATLAB软件编制高效的计算机程序,实现了对抽采瓦斯钻孔流量的模拟和预测。为了检验模型模拟和预测结果的精度,选择了合理的误差检验模型。通过工程实例证明了GM(1,1)模型可信度较高,关联度较好,均方差比值为一级,拟合优度高。对瓦斯抽采设计和矿井安全生产具有一定的指导意义。  相似文献   

6.
在煤层瓦斯抽采工艺中,抽采钻孔周围煤层瓦斯压力分布状况决定了最佳抽采时间和抽采半径。为研究抽采钻孔周围煤层瓦斯压力分布情况,通过理论分析和数值模拟,构建抽采钻孔周围煤层瓦斯流量表达式;应用达西渗流定律,推导出抽采钻孔周围煤层瓦斯压力解析表达式;采用瓦斯抽采半径随抽采时间的变化速率作为确定瓦斯抽采最佳时间的依据,给出临界值,并进行工程应用。结果表明:随着测定点与钻孔中心距离的增加,煤层瓦斯压力逐步上升,最终趋于原始值;随着抽采时间延长,瓦斯压力大致呈指数规律下降;瓦斯抽采半径随抽采时间的变化速率临界值可暂定为0.47。  相似文献   

7.
多变量灰色模型及其在钻孔瓦斯流量预测中的应用   总被引:3,自引:5,他引:3  
钻孔瓦斯流量直接关系着钻孔抽放煤层瓦斯涌出量及钻孔瓦斯涌出初速度的判定,因此研究钻孔瓦斯流量的变化及发展趋势具有较大实用价值。钻场中各钻孔瓦斯流量与其周围煤(岩)的渗透性、强度、瓦斯压力和地应力等因素之间是灰色的非线性关系[1]。笔者把钻场中互相影响的各钻孔看作一个系统,建立多变量灰色模型(MGM(1,n));借助MATLAB软件,实现对钻场中多钻孔的瓦斯流量的预测;克服了过去钻场中单钻孔瓦斯流量预测的结果与实际测量值吻合程度不理想的弊端。与此同时,结合工程实例,将多变量模型模拟和单点模型模拟的结果进行比较,其结果表明多变量灰色模型预测精度较高,对瓦斯抽放设计和矿井安全生产具有较大的指导意义。  相似文献   

8.
为了提高突出煤层瓦斯渗透率,解决我国低透气性突出煤层瓦斯抽放难题,理论研究静态膨胀剂-附加应力-瓦斯渗透率三者之间的相互关系;对比实测某矿1235运输巷右帮M3突出煤层膨胀开裂区和常规抽放区单孔瓦斯抽放参数。理论推导得出:突出煤层钻孔注入静态膨胀剂后有效应力减小和煤体瓦斯渗透率增加。对比表明:1235运输巷右帮膨胀开裂区单孔瓦斯抽放参数明显优于常规抽放区对应的瓦斯抽放孔;测试条件下,相同孔间距与钻孔直径比值不同钻孔直径测试方案中,膨胀开裂区随着钻孔直径增大,单孔瓦斯抽放参数值呈明显上升趋势,其中,膨胀开裂区1号Φ94 mm抽放孔瓦斯抽放流量均值高达0. 104 m3/min和瓦斯抽放体积分数均值高达63%,该孔膨胀开裂瓦斯抽放效果最佳;较常规抽放区同直径的6号Φ94 mm钻孔的瓦斯抽放流量均值和瓦斯抽放体积分数均值分别提高了39%和15%。  相似文献   

9.
钻孔钻进过程的实验室模拟及失稳现象捕捉,是钻孔失稳破坏机制研究的关键环节。通过构建模拟煤层钻进过程中钻孔失稳监测系统及方法,探讨了轴压、吸附平衡压力、气体种类及煤的变质程度对钻孔稳定性的影响规律,得出不同试验条件下的孔周煤体应力变化及孔壁、孔底破坏特征。研究结果表明:随轴压及吸附平衡压力的增大,孔周煤体峰值应力最大值逐渐增大,孔壁变形及孔底破坏趋于严重,甚至发生喷孔;与N2相比,当煤样吸附CO2时,孔周煤体峰值应力最大值较大,孔壁变形及孔底破坏也较为严重;随煤的变质程度的加大,孔周煤体峰值应力最大值及卸压范围呈先增大后减小的趋势,试验所用焦煤应力集中现象及孔壁、孔底破坏程度最为严重。  相似文献   

10.
胡杰    孙臣   《中国安全生产科学技术》2017,13(10):48-52
为研究水力冲孔措施下煤层瓦斯高效抽采钻孔合理布置参数,提高煤层瓦斯抽采效率,以平煤十三矿己15-17-13051工作面为例,对水力冲孔有效影响半径进行效果考察。通过布置多组试验钻孔,分别对水力冲孔措施前后钻孔瓦斯浓度、瓦斯流量数据进行综合考察,结果表明:水力冲孔措施增大了煤层透气性系数,高效提升了煤层瓦斯抽采率,执行冲孔措施后瓦斯浓度最低可提高至2.05倍、瓦斯纯流量增至2.56倍以上,采用瓦斯流量法确定了己15-17煤层水力冲孔措施实际有效影响半径为4.8~5.9 m,对于指导煤层瓦斯抽采钻孔合理布置具有指导性意义。  相似文献   

11.
张集矿属于煤与瓦斯突出矿井,针对目前所开采的17266工作面地质构造条件复杂、瓦斯涌出量大、处于突出危险区等瓦斯治理难题,采取"风排瓦斯、高抽巷穿层钻孔抽采、运输巷、回风巷顺层钻孔抽采和上隅角埋管抽采"等瓦斯综合治理措施,用分源预测法得出工作面绝对瓦斯涌出量为30.3 m3/min。结果表明,工作面的主要瓦斯涌出来源为本煤层瓦斯涌出。工作面风排瓦斯量11.0 m3/min,工作面瓦斯抽采率达63.0%以上。  相似文献   

12.
为了探究使用分层充填法采煤过程中煤层瓦斯的运移方式及涌出规律,以高河煤矿E1302工作面为研究对象,采用实验室试验、理论分析、数值模拟相结合的方法建立数学模型,利用数值模拟软件对煤层瓦斯的运移方式及涌出规律进行求解。研究结果表明:使用分层充填法采煤时,充填体渗透率远大于煤体,下分层煤体中的瓦斯会以充填体为媒介向工作面涌入;开采过程中,工作面瓦斯压力随开采时间逐渐降低,开采30 d后,煤层最大瓦斯压力下降18.75%,最大瓦斯渗流速度始终位于充填体、工作面、下分层煤体交界处;工作面绝对瓦斯涌出量随着开采时间的推移呈波动式下降。  相似文献   

13.
针对顺层瓦斯抽采过程中,因钻孔形变较大、封孔长度不足及封孔方法不合理等因素造成抽采钻孔及其周围煤体漏风严重、抽采瓦斯浓度偏低、流量衰减速度较快及稳定性差等技术难题,基于多孔介质渗流理论、流体平衡理论、"固封液-液封气"钻孔密封技术原理,研究了承压密封液在煤层钻孔内的径向渗流规律,建立了不可压缩流体径向驱气稳定渗流物理模型、密封液径向渗流运动数学方程及相关参数计算公式,进而提出了固液耦合壁式密封顺层瓦斯抽采技术。结果表明,采用固液耦合壁式密封技术可对抽采钻孔及周围煤体裂隙实施动态密封,使得瓦斯抽采过程浓度稳定,单孔平均浓度提高4~5倍,平均抽采瓦斯体积分数达到89%以上,显著提高了本煤层瓦斯的抽采效率。  相似文献   

14.
瓦斯压力测定时间及其受控因素分析   总被引:1,自引:0,他引:1  
提前掌握瓦斯压力测定所需时间,对准确高效地测定煤层瓦斯压力非常重要。以被动式岩巷测压为例,在初步分析测压钻孔周围煤体初始瓦斯压力分布规律、游离瓦斯与吸附瓦斯的关系、瓦斯流量衰减规律及瓦斯流场平衡条件的基础上,从理论上推导出瓦斯压力测定时间计算公式。将该公式与现场瓦斯压力测定监测数据进行对比分析,并研究瓦斯压力测定时间的影响因素。结果表明,理论分析结果与现场瓦斯压力测定情况基本一致,测压时间的误差仅为6%;改变测压钻孔初始气体压力(主动式测压)是唯一有实用价值的方法。  相似文献   

15.
为使瓦斯抽采效果在技术、经济方面达到最佳,研究了瓦斯抽采过程中煤层瓦斯的运移规律和钻孔的合理布孔间距。将煤层视为双孔隙双渗透率弹性介质,推导了煤基质、裂隙渗透率演化方程,综合考虑了瓦斯吸附/解吸特性、煤岩变形等因素的影响,建立了煤层双重介质流固耦合模型,并进行了钻孔瓦斯抽采模拟,分析了钻孔间距对瓦斯抽采的影响。结果表明:不同钻孔间距的瓦斯压力随抽采时间的增加先快速下降再趋于平缓,且钻孔间距越小,瓦斯压力下降越快;随着钻孔间距的增大,O点消突时间逐渐增加,与钻孔间距呈二次方关系;现场试验与模拟结果基本吻合,钻孔间距5 m时瓦斯抽采效果最佳。  相似文献   

16.
基于斌郎煤矿401采区瓦斯地质情况,参照相关规范计算并预测了采区瓦斯储量和瓦斯涌出量,预测值分别为15.08 Mm3和7.84 m3/min,以此为依据初步分析确定了该采区抽采瓦斯的必要性与可行性。为进一步掌握煤层预抽瓦斯的可行性,在401采区北端沿内连煤层掘进1条长度为309 m的瓦斯专用巷道。通过在±0西北大巷实施穿层钻孔和在采区内连煤层掘煤巷道实施顺层钻孔2种钻采方式,进行了采区瓦斯预抽试验。试验共实施了6个穿层孔和6个顺层孔,临孔间距分别为6 m和5 m,测得12个孔的平均单孔瓦斯流量和平均瓦斯体积分数分别为0.091 m3/min和47%,获得了较好的瓦斯预抽效果。综合分析采区瓦斯主要参数的预测结果和瓦斯预抽试验数据,提出了"以首先开采外连煤层并同时抽采内连煤层的卸压瓦斯为主,必要时预先抽采煤层瓦斯和围岩裂隙中瓦斯"的采区瓦斯治理方案和将U型通风变更为Y型通风的建议。参考相似矿井的瓦斯利用经验对瓦斯发电的投入及产出进行了预算和评估,将发电机功率初步确定为500 kW。  相似文献   

17.
针对新建矿井地勘瓦斯含量测值偏低和井下实测瓦斯含量较少的特点,结合工程和科研实践,提出了利用大量的工作面瓦斯涌出量反演煤层原始瓦斯含量技术和基于探采对比的煤层瓦斯含量预测方法。以邹庄井田32煤层为研究对象,在考虑瓦斯抽采情况下计算3204工作面瓦斯涌出量,并反演该工作面煤层原始瓦斯含量。通过对比采掘过程中获得的瓦斯含量和地勘瓦斯含量,得到不同钻孔深度时的地勘瓦斯含量修正系数,并采用瓦斯地质研究方法对32煤层分3个单元进行瓦斯含量预测。结果表明:32煤层瓦斯含量整体呈现"东部大于西部,北部大于南部"的规律,与临近矿井具有相似的瓦斯赋存规律。这表明利用探采对比的方法预测煤层瓦斯含量是可靠的。  相似文献   

18.
为确定穿层钻孔有效抽采半径,提出基于钻孔瓦斯自然涌出规律的测定方法。利用COMSOL Multiphysics软件分析钻孔周围瓦斯流动规律;根据模拟结果及煤层瓦斯流动理论,建立钻孔瓦斯自然排放影响圈内瓦斯含量、瓦斯涌出量和残存瓦斯量之间的函数关系式,提出以钻孔瓦斯自然涌出有效影响半径代替抽采负压影响下的有效抽采半径;在鹤壁三矿、十矿和古汉山矿进行现场实测。结果表明:有效抽采半径内,瓦斯压力呈线性分布;受钻孔周围煤体蠕变卸压影响,瓦斯自然涌出具有明显的阶段性特征,确定的有效抽采半径最大可达4 m,研究结果符合实际。  相似文献   

19.
李丽  陈志平  张以晨  焦雯淼 《安全》2021,42(6):61-68
为保障突出矿井近距离煤层群安全开采,本文基于上保护层开采时下邻近煤层卸压瓦斯治理的重要性,探讨采场动压影响下围岩变化与卸压瓦斯解吸运移的时空关系,研究瓦斯涌出形态和控制措施.结果表明:煤层组开采上保护层时,伴随工作面推进,底板煤岩系表现出时空滞后的蠕变特性;邻近层卸压瓦斯涌出按其对应工作面位置的活跃程度呈现出"四带"特征;被保护层卸压涌出占总瓦斯涌出量的70%以上,直接对被保护层进行目标抽采瓦斯是实现卸压瓦斯抽采最大化的最佳途径;在使用底板瓦斯道施工穿层钻孔抽采被保护层卸压瓦斯时,根据巷道顶板瓦斯层流情况,确定全负压通风并保持风速1.1m/s以上是保障安全作业环境优化条件.  相似文献   

20.
为了防止软煤层钻孔在瓦斯抽采过程中短时间内塌孔堵死,提高钻孔瓦斯抽放效率,对软煤层钻孔钻杆内下套管设备和工艺方法进行了分析和研究。通过对比分析常规下套管方式、原有钻杆内下套管方式和改进后钻杆内下套管方式的在软煤层试验,得出以下结论:采用钻杆内下套管设备下套管的长度远大于采用常规钻进方式下套管的长度;钻杆内下套管设备的钻头和钻杆设计对钻进和下套管长度影响较大,设计时钻头直径大小应适中,钻杆应尽量采取内平丝扣连接;采用钻杆内下套管方式的百米钻孔瓦斯抽放量要远大于普通钻进下套管钻孔的百米钻孔瓦斯抽放量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号