首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、前言 石墨炉原子吸收法的灵敏度比火焰法要高3-4个数量级,是痕量元素分析的有效方法。但是用于直接测定海水中的重金属元素首先要解决海水基体干扰的问题。海水的含盐量为2.5%-3.5%,此浓度产生的背景吸收是很高的。人们使用过多种基体改进剂来消除海水基体的干扰[1],其中最常用的改进剂是硝酸铵,它的作用是使海水中大量的NaCl基体生成易挥发的NaNO3和NH4Cl在原子化前驱除。这方面的工作已有一些报道[2·3·4]其中[2]讨论了NH4NO3消除干扰的作用,并报导了在加入NH4NO3后测定Cu。文献[3]发现加入NH4NO3测定铁、锰是不成功的,但可以测Zn。根据文献[4]报道在加入15%NH4NO3之后直接测定海水中的铅,海水需以1:1稀释。上述各报导只限于测定海水中的Cu、Pb、Zn。而且海水往往需要事先进行稀释,其原因可能是仪器扣除背景的能力不足。 本文以15%(w/v)NH4NO3作为基体改进剂,可以在同一样品中直接测定C、Pb、Cd  相似文献   

2.
前 言 对海洋水质分析监测是进行海洋环境质量评价的基础,特别是重金属元素含量的测定,是正确评价海洋环境的必要条件。为此,研究测定海水中痕量铜、镉、铅、砷的方法,在海洋环境保护工作中有其重要的意义。 测定海水中痕量元素时,因碱金属和碱土金属的氯化物含量高,基体组成复杂,有严重的背景干扰,故国外文献报导中大多采用萃取法分离基体后进行测定,操作步骤烦琐,有机试剂有毒。用石墨炉法直接测定海水中的铜、镉、铅、砷在国内报导较少,在国外只是进行了部分工作。本文应用具有高灵敏度特点的石墨炉原子吸收光谱法,通过应用基体改进效应和改进石墨炉原子化器,排除了海水基体氯化钠和镁、钙、锶等对铜、镉、铅、砷的干扰影响,并可直接进样测定。从而省去冗长的化学预处理、萃取分离等步骤。并成功地应用于直接测定海水中的痕量铜、镉、铅、砷。方法快速、简便,适用于常规分析。  相似文献   

3.
一般而言,现有分析方法中,除中子活化和阳极溶出伏安法外,没有任何分析技术可以直接测定海水中浓度低于5微克/升的痕量元素铅。无火焰原子吸收虽可直接测定每毫升含10~(-8)克铅,但由于海水中存在大量的碱金属和碱土金属的氯化物,在灰化过程中将导致铅的严重损失.Segar等企图借选择性挥发技术以消除海水基体干扰,但没有成功。后Robinson等应用“T”形空心原子化器测定海水中0.11微克铅/毫升。这比通常  相似文献   

4.
海水中痕量金属的分析一般采用共沉淀或溶剂萃取预富集后用石墨炉原子吸收法测定,但在操作过程中需要各种超纯试剂和聚丙烯器皿,而且在分离过程中也难免试样不被沾污,尤其是对痕量锌的测定。用石墨炉直接测定海水中锌的方法具有取样少,减少沾污和操作简便等优点,但基体对锌的原子化有严重的抑制作用。实验证明,用文献[1]所列条件:在100℃干燥30秒,450℃灰化25秒,2500℃原子化6秒,在波长213.9毫微米处测得锌的回收率仅为20—30%。用基体改进效应可以消除基体干扰。在海水中加  相似文献   

5.
镍为基体改进剂石墨炉原子吸收法测定水中砷   总被引:1,自引:0,他引:1  
用镍为基体改进剂石墨炉原子吸收法测定水中砷的方法具有快速、简便、准确的特点。测定范围为上限100mg/L,下限为1.4μg/L,检测范围宽,回收率为100%±5,此方法适合于水和废水中砷的测定。本文对测定条件进行了筛选,考察了大量干扰因素。  相似文献   

6.
用石墨炉原子吸收分光光度法测定环境废水中的痕量Cd时,Mn、Cr、Ni、Cu、Co、Zn等共存元素干扰严重。用100mg/L的Fe作为基体改进剂可消除上述共存元素的干扰,测定结果令人满意。  相似文献   

7.
基体改进剂技术石墨炉原子吸收测定环境样品中铝   总被引:1,自引:0,他引:1  
原子吸收测环境样品中铝一般用氧化亚氮——乙炔火焰法。也有文章介绍氧气——乙炔火焰法,因实验室特殊要求和气源问题而难以推广。石墨炉直接测铝因基体干扰而空白值高、精密度差。有文献报道卫生防疫部门在测定血清、蛋白、尿等样品时加入基体改进剂,对提高灰化温度、降低基体干扰效果明显。环境监测方面未见报道。我们在参考文献的基础上对不同试剂进行测试比较后,选择硝酸镁做环境样品基体改进剂,提高了方法灵敏度和精密度。  相似文献   

8.
9.
金学根 《环境科学》1996,17(3):61-63
用双硫腙-醋酸丁酯萃取石墨炉原子吸收法测定海水中痕量Cu,Pb,Cd。试验选定了测定条件,结果表明,在弱碱性介质中,能同时定量萃取Cu,Pb,Cd。方法的相对标准偏差〈3%。加标回收率92%-102%,检出限分别为Cu0.06,Pb0.14,Cd0.002。本法操作简便,快速,已应用于海水中Cu,Pb,Cd的分析,取得令人满意的结果。  相似文献   

10.
用双硫腙-醋酸丁酯萃取石墨炉原子吸收法测定海水中痕量Cu、Ph、Cd.试验选定了最佳测定条件.结果表明,在弱碱性介质(pH8-10)中,能同时定量萃取Cu、Pb、Cd.方法的相对标准偏差<3%,加标回收率92%-102%,检出限(μg/L)分别为Cu0.06,Pb0.14,Cd0.002.本法操作简便、快速,已应用于海水中Cu、Pb、Cd的分析,取得了令人满意的结果.  相似文献   

11.
石墨炉原子吸收法直接测定水中钼   总被引:1,自引:0,他引:1  
程滢 《云南环境科学》2006,25(Z1):178-179
用石墨炉原子吸收法测定水中钼.用不带平台的热涂层石墨管,将灰化温度提高到1850℃,原子化温度定为2380℃,取得较好效果.对6个样品测定,相对标准差<10%,加标回收率在96.6~101%之间,精密度和准确度较好.  相似文献   

12.
采用长寿命石墨管,应用塞曼效应扣除背景,在测定铜金属中无任何基体改进剂及测定铅、镉金属中加入2.5%的NH4H2PO4作为基体改进剂,提出用石墨炉原子吸收法连续测定西丽水库支流中铜、铅、镉金属的舍量的方法.结果表明,该方法简便、快速、准确,结果令人满意.  相似文献   

13.
废渣浸出液成分较为复杂,直接采用无火焰原子吸收分析时,干扰严重,采取石墨炉法虽可排除干扰,但操作复杂,不宜推广.国内外有关加入基体改进剂测铍的报导很少,尤其是以镁为基体改进剂测铍还未见报导.本文详细研究了镁为基体改进剂测定铍的工作条件,干扰情况、准确度,精密度等方面的工作.结果较为理想,最低检出为0.06ppb.不仅适于废渣样品,也完全可以满足水及生物样品中微量铍的分析.  相似文献   

14.
以硝酸镁为基体改进剂,采用石墨炉原子吸收法测定水质标准样品中的铍,通过加入前后测定标准曲线和信号曲线的对比,以及样品测试结果准确度、精密度评价,验证硝酸镁可以提高高温状态下铍元素原子化效率,改善标准曲线线性关系,样品的精密度和准确度,且方法简便易操作,检测结果符合实验室内质控要求。  相似文献   

15.
重金属对海洋环境的污染正日益受到重视,海水中微量金属的测定亦成为海水分析化学中的重要工作之一。由于海水盐介质的存在,给测定带来许多困难。用无火焰原子吸收分光光度法直接测定海水中微量金属已有报道,但其灵敏度仍嫌不够,而且测定前往往需要进行预富集处理。目前国内用得较多的是溶剂萃取法,但要接触易挥发、有毒害的有机试剂,且富集倍数也不很大。 CO~APDC共沉淀预富集法在国外已有应用,但国内仍未见报道。该方法共沉淀效率高,富集倍数大,可同时预富集多种微量金属,能用于测定微量金属浓度很低的海水样品。  相似文献   

16.
用石墨炉原子吸收分光光度法对水中痕量铜、铅、镉样品进行测定。结果表明,采用合适的仪器和石墨管升温程序条件,并注意进样针位置调节和石墨管的选择,测定的精密度和准确度好,灵敏度高,能满足水中痕量样品的分析。  相似文献   

17.
研究一种直接收集并测定大气微粒物质中痕量有害元素铅的新方法,石墨探针直接收集APM后,用石墨探针炉原子吸收法直接测定收集在探针上的APM中痕量铅。方法特征量为44.00pg,检出限为48.36pg,,相对标准偏差为3.22%,铅学度与峰面积吸光度在0-250μg/L范围内呈线性关系,测定标准参比材料,其回收率为94.42%_99.14%,并成功地测定了大气微粒物质中痕量铅的含量。  相似文献   

18.
<正> 一、前言镉是环境中的重要污染物.原子吸收法测定土壤、渣泥等样品中的镉含量,首先要对样品进行消解处理.虽然已有直接进样分析的报导,但目前只能定性或半定量分析.通常的消解方法有湿法和干法.干法消解操作冗长,而且对于象镉、铅等易挥发金属,容易引起挥发损失;敞口湿法消解引入较多的试剂空白,且易受到污染.近年来,有报导用封闭容器,高温高压消解土壤等样品,试剂用量少,不易受污染,并可防止组分挥发损失.我们参考有关资料,自制了高压密闭消解器,使用硝酸水溶液,高温高  相似文献   

19.
对APDC-MIBK萃取火焰原子吸收法和石墨炉原子吸收法进行对比实验分析,两种方法均能满足环境监测中对地表水中镉、铅、铜含量测定的实验分析要求。石墨炉原子吸收法实验过程和样品处理较简单,不产生有害物质,对于大批次样品的测定有较高效率。  相似文献   

20.
一、前言镉是环境中的重要污染物。原子吸收法测定土壤等样品中的镉含量,一般先要对样品进行消解处理,其方法很多。近年来,有报导采用封闭容器、高温高压消解土壤等样品,试剂用量少,不易受污染,且可防止组份挥发损失。我们参考有关资料,自制了高压密闭消解器,使用硝酸水溶液,高压  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号