首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers the spatial and temporal variability in concentrations of the potentially acidifying ions in precipitation in Lithuania during the 1981-2004 period. Chemical analysis of precipitation included measurements of pH, conductivity, sulfate (SO4(2-)), nitrate (NO3-), chloride (Cl-), ammonium (NH4+), sodium (Na+), potassium (K+), and calcium (Ca2+). Temporal trends in the potentially acidifying ion concentrations in precipitation and wet deposition were evaluated using the non-parametric Mann-Kendall test and Sen's slope estimator. A statistically significant decline was observed in non-sea salt sulfate (nssSO4(2-)) and hydrogen (H+) ions concentrations (82% and 79%, respectively) and wet depositions (88% and 74%, respectively). Temporal trends both in concentration and wet deposition of nitrate and ammonium were not as pronounced as trends in sulfate concentration. Analysis of air mass backward trajectories was applied to reveal the influence of air mass originating in different regions on wet deposition of acidifying species in Lithuania. Sector analysis clearly showed that wet deposition of sulfur and nitrogen in Lithuania is to a large extent anthropogenic and the main source regions of acidifying species contributing to wet deposition in Lithuania are in South and Central Europe.  相似文献   

2.
Trends in atmospheric acid deposition and in soil solution acidity from 1995 or later until 2007 were investigated at several forest sites throughout Switzerland to assess the effects of air pollution abatements on deposition and the response of the soil solution chemistry. Deposition of the major elements was estimated from throughfall and bulk deposition measurements at nine sites of the Swiss Long-Term Forest Ecosystem Research network (LWF) since 1995 or later. Soil solution was measured at seven plots at four soil depths since 1998 or later. Trends in the molar ratio of base cations to aluminum (BC/Al) in soil solutions and in concentrations and fluxes of inorganic N (NO(3)-N + NH(4)-N), sulfate (SO(4)-S), and base cations (BC) were used to detect changes in soil solution chemistry. Acid deposition significantly decreased at three out of the nine study sites due to a decrease in total N deposition. Total SO(4)-S deposition decreased at the nine sites, but due to the relatively low amount of SO(4)-S load compared to N deposition, it did not contribute to decrease acid deposition significantly. No trend in total BC deposition was detected. In the soil solution, no trend in concentrations and fluxes of BC, SO(4)-S, and inorganic N were found at most soil depths at five out of the seven sites. This suggests that the soil solution reacted very little to the changes in atmospheric deposition. A stronger reduction in base cations compared to aluminum was detected at two sites, which might indicate that acidification of the soil solution was proceeding faster at these sites.  相似文献   

3.
Sulfate adsorption capacity of B-horizons of base-poor, predominantly stagnopodzol, soils from the Plynlimon catchments, mid-Wales was determined by combination of laboratory adsorption and desorption isotherms. Results show that sulfate adsorption capacity of a range of stagnopodzol (Histic-stagno-podzol (Leptic), WRB), brown podzolic soil (Histic-umbrisol (Leptic), WRB) and stagnohumic gley (Histic-stagno-gleysol, WRB) B-horizons was positively related to the amounts of extractable (pyrophosphate and oxalate) Fe + Al, with the stagnopodzol and brown podzolic soil Bs horizon having the largest adsorption capacity and stagnohumic gley Bg horizon the smallest adsorption capacity. Results show that dissolved organic carbon (DOC) has a negative but limited effect on sulfate adsorption in these soils. Results obtained from a set of historical soil samples revealed that the grassland brown podzolic soil Bs horizon and afforested stagnopodzol Bs horizon were highly saturated with sulfate in the 1980s, at 63% and 89% respectively, whereas data from some recently sampled soil from two sites revisited in 2010-11 indicates that percentage sulfate adsorption saturation has since fallen substantially, to 41% and 50% respectively. Between 1984 and 2009 the annual rainfall-weighted mean excess SO(4)-S concentration in bulk precipitation declined linearly from 0.37 mg S l(-1) to 0.17 mg S l(-1). Over the same period, flow weighted annual mean stream water SO(4)-S concentrations decreased approximately linearly from 1.47 mg S l(-1) to 0.97 mg S l(-1) in the plantation afforested Hafren catchment compared to a drop from 1.25 to 0.69 mg S l(-1) in the adjacent moorland catchment of the Afon Gwy. In flux terms, the mean decrease in annual stream water SO(4)-S flux has been approximately 0.4 kg S ha(-1) yr(-1), whilst the recovery in stream water quality in the Afon Cyff grassland catchment has been partly offset by loss of SO(4)-S by desorption from the soil sulfur pool of approximately 0.2 kg S ha(-1) yr(-1).  相似文献   

4.
研究SO_2与硫酸盐化速率的相关关系,以GB3095-82(大气环境质量标准)中的SO2标准为基础,并借鉴国外先进国家的标准和硫酸盐化速率植物试验的成果,结合南京市大气环境质量现状,制定适合于南京地区的大气硫酸盐化速率建议标准.  相似文献   

5.
Atmospheric visibility impairment has gained increasing concern as it is associated with the existence of a number of aerosols as well as common air pollutants and produces unfavorable conditions for observation, dispersion, and transportation. This study analyzed the atmospheric visibility data measured in urban and suburban Hong Kong (two selected stations) with respect to time-matched mass concentrations of common air pollutants including nitrogen dioxide (NO(2)), nitrogen monoxide (NO), respirable suspended particulates (PM(10)), sulfur dioxide (SO(2)), carbon monoxide (CO), and meteorological parameters including air temperature, relative humidity, and wind speed. No significant difference in atmospheric visibility was reported between the two measurement locations (p > or = 0.6, t test); and good atmospheric visibility was observed more frequently in summer and autumn than in winter and spring (p < 0.01, t test). It was also found that atmospheric visibility increased with temperature but decreased with the concentrations of SO(2), CO, PM(10), NO, and NO(2). The results showed that atmospheric visibility was season dependent and would have significant correlations with temperature, the mass concentrations of PM(10) and NO(2), and the air pollution index API (correlation coefficients mid R: R mid R: > or = 0.7, p < or = 0.0001, t test). Mathematical expressions catering to the seasonal variations of atmospheric visibility were thus proposed. By comparison, the proposed visibility prediction models were more accurate than some existing regional models. In addition to improving visibility prediction accuracy, this study would be useful for understanding the context of low atmospheric visibility, exploring possible remedial measures, and evaluating the impact of air pollution and atmospheric visibility impairment in this region.  相似文献   

6.
A biomonitoring study was conducted to investigate the responses of plants exposed to power plant emission in a dry tropical environment. For this purpose, five sampling sites were selected in the prevailing wind direction (NE) at different distance to thermal power plant (TPP) within 8.0 km range and a reference site was selected in eastern direction at a distance of 22.0 km. The two most common tree species, Ficus benghalensis L. (Evergreen tree) and Dalbergia sisso Roxb. (deciduous tree) were selected as test plants. Ambient sulphur dioxide (SO(2)), nitrogen dioxide (NO(2)), suspended particulate matter (SPM), respirable suspended particulate matter (RSPM), dust-fall rate (DFR) and plant responses such as leaf pigments (chlorophyll a, chlorophyll b and carotenoids), ascorbic acid, sugar and sulphate-sulphur (SO4(2-)-S) contents were measured. Ambient SO(2), NO(2), SPM, RSPM and DFR showed significant spatial and temporal variation at different sites. Considerable reduction in pigment (chlorophyll a, chlorophyll b and carotenoids) and sugar contents were observed at sites receiving higher pollution load. Ascorbic acid exhibited significant positive correlation with pollution load. Accumulation of SO4(2-)-S in leaf tissue showed significant positive correlation with ambient SO(2) concentration at all the sites. At the same time, SO4(2-)-S showed significant negative correlation with pigment and sugar content. D. sisso Roxb. tree was found to be more sensitive as compared to F. benghalensis L. tree.  相似文献   

7.
Bulk samples collected on a daily basis at three principal meteorological stations in central Serbia were analyzed on chloride (Cl(-)), nitrate [Formula: see text], sulfate [Formula: see text], sodium (Na(+)), ammonium [Formula: see text], potassium (K(+)), calcium (Ca(2+)), and magnesium (Mg(2+)) in addition to precipitation amount, pH and conductivity measurements over the period 1998-2004. The data were subjected to variety of analyses (linear regression, principal component analysis, time series analysis) to characterize precipitation chemistry in the study area. The most abundant ion was [Formula: see text] with annual volume weighted mean concentration of 242 microeq L(-1). Neutralization of precipitation acidity occurs both as a result of the dissolution of alkaline compounds containing Ca(2+), Mg(2+), and K(+) as well as the absorption of ammonia. The ratio of [Formula: see text] was above 5, which indicated that the combustion process of low-grade domestic lignite for electricity generation from coal-fired thermal power plants was the main source of pollution in the investigated area. A considerable mean annual bulk wet deposition of SO(4)-S determined by precipitation amount and concentrations of sulfate in the precipitation was calculated to be 12-35 kg ha(-1).  相似文献   

8.
A study for assessment and management of air quality was carried out in the Ib Valley area of the Ib Valley coalfield in Orissa state, India. The 24 h average concentrations of suspended particulate matter (SPM), respirable particulate matter (RPM), sulfur dioxide (SO(2)) and oxides of nitrogen (NO(x)) were determined at regular intervals throughout one year at twelve monitoring stations in residential areas and six monitoring stations in mining/industrial areas. The 24 h average SPM and RPM concentrations were 124.6-390.3 microg m(-3) and 25.9-119.9 microg m(-3) in residential areas, and were 146.3-845.2 microg m(-3) and 45.5-290.5 microg m(-3) in industrial areas. During the study period, 24 h and annual average SPM and RPM concentrations exceeded the respective standards set in the Indian national ambient air quality standard (NAAQS) protocol as well as USEPA, EU, WHO and World Bank standards at most of the residential and industrial areas. However, concentrations of SO(2)(annual average: 24.6-36.1 microg m(-3) and 24 h average: 17.0-46.3 microg m(-3)) and NO(x)(annual average: 23.6-40.9 microg m(-3) and 24 h average: 18.3-53.6 microg m(-3)) were well within the prescribed limit of the NAAQS and international standards in both residential and industrial areas. The temporal variations of SPM and RPM fitted polynomial trends well and on average in the mining area 31.91% of the SPM was RPM. The linear regression correlation coefficients between SPM and RPM and between NO(x) and SO(2) were 0.94 (+/-0.04) and 0.66 (+/-0.10), respectively. The optimum interpolation technique, kriging, determined that maximal concentrations of SPM and RPM occurred within the mining site. Highest concentrations of particulate matter were observed during the winter season followed by summer, autumn and rainy seasons. An action plan is formulated for effective control of air pollution at source, and mitigative measures should include implementation of green belts around the sensitive areas where the concentration of air pollutants exceeds the standard limit.  相似文献   

9.
Water-soluble inorganic ions in aerosol samples have been studied. The sample collection took place during summer in 2003 at a European background site which is operating within the framework of the European Monitoring and Evaluation Program. Gent type PM10 stacked filter unit (SFU) samplers were operated in parallel on a day and night basis to collect particles in separate coarse (2.0-10 microm) and fine (<2.0 microm) size fractions. Particulate masses were measured gravimetrically; the filters from one of the SFU samplers were analyzed by particle-induced X-ray emission spectrometry (PIXE) and instrumental neutron activation analysis (INAA). Filters from the other SFU sampler were analyzed by ion chromatography (IC) for major inorganic anions (MSA-, NO2(-), NO3(-), Cl-, Br-, SO4(2-), oxalate) and cations (Na+, K+, NH4(+), Mg2+, Ca2+). The water-soluble inorganic ions measured were responsible for 44% and 16% of the total fine and coarse particulate mass, respectively. In the fine size fraction, the main ionic components were SO4(2-) and NH4(+) accounting for about 90% of fine ionic mass. In the coarse fraction the main ionic components were Ca2+ and NO3(-), followed by SO4(2-). Significant day and night difference in the mass concentrations was observed only for fine NO3(-). The molar ratios of fine NH4(+) to SO4(2-) indicated their complete neutralization to (NH4)2SO4. According to the cation-to-anion ratios the coarse particles were alkaline, while the fine particles were slightly acidic or neutral. By comparing the corresponding concentrations obtained from PIXE/INAA and IC, we determined the water-extractable part of the individual species. We also investigated the effect of long-range transported air masses on the local air concentrations, and we found that the air quality of this background monitoring station was affected by regional pollution sources.  相似文献   

10.
The daily and seasonal atmospheric concentrations, deposition fluxes and emission sources of a few C3–C9 gaseous alkyl nitrates (ANs) at the Belgian coast (De Haan) on the Southern North Sea were determined. An adapted sampler design for low- and high-volume air-sampling, optimized sample extraction and clean-up, as well as identification and quantification of ANs in air samples by means of gas chromatography mass spectrometry, are reported. The total concentrations of ANs ranged from 0.03 to 85 pptv and consisted primarily of the nitro-butane and nitro-pentane isomers. Air mass backward trajectories were calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to determine the influence of main air masses on AN levels in the air. The shorter chain ANs have been the most abundant in the Atlantic/Channel/UK air masses, while longer chain ANs prevailed in continental air. The overall mean N fluxes of the ANs were slightly higher for summer than those for winter-spring, although their contributions to the total nitrogen flux were low. High correlations between AN and HNO2 levels were observed during winter/spring. During summer, the shorter chain ANs correlated well with precipitation. Source apportionment by means of principal component analysis indicated that most of the gas phase ANs could be attributed to traffic/combustion, secondary photochemical formation and biomass burning, although marine sources may also have been present and a contributing factor.  相似文献   

11.
Atmogenic sulfur (S) deposition loading by acid rain is one of the biggest environmental problems in China. It is important to know the accumulated S stored in soil, because eventually the size (and also the "desorption" rate) determines how rapidly the soil water pH responds to decrease in S deposition. The S fractions and the ratio of total carbon/total sulfur (C/S) of forest soil in 9 catchments were investigated by comparing soils at the rural and urban sites in China. The S fractions included water-soluble sulfate-S (SO(4)-S), adsorbed SO(4)-S, insoluble SO(4)-S and organic S. The ratio of C/S in soil at the rural site was significantly (p < 0.05) greater than that at the urban site. C/S of soil in the A horizon was significantly (p < 0.05) and negatively correlated with the wet S-deposition rate. The ratio of C/S presents a better indicator for atmogenic S loading. Organic S was the dominant form in soils at rural sites; contributing more than 69% of the total S in the uppermost 30 cm soil. Organic S and adsorbed SO(4)-S were the main forms of S in soil at urban sites. High contents of water-soluble SO(4)-S and adsorbed SO(4)-S were found in uppermost 30 cm soils at urban sites but not at rural sites. Decades of acid rain have caused accumulation of inorganic SO(4)-S in Chinese forest soil especially at the urban sites. The soil at urban sites had been firstly acidified, and the impacts on the forest ecosystem in these areas should be noticed.  相似文献   

12.
Three gaseous pollutants, carbon monoxide, nitrogen dioxide, and sulfur dioxide were studied in the Nakorn Sri Thammarat Province area (Thailand) during March-August 1987. Air samples were taken from 12 stations covering four districts, i.e., Tungsong, Pakpanang, Muang, and Kanoum. Five stations are located in areas of light traffic conditions and low human population and seven are in densely populated areas with heavy traffic conditions.In this study the concentrations of pollutants found were in the range of non-detectable-0.7 ppm for carbon monoxide, 0.6–7.4 pphm for nitrogen dioxide, and non-detectable-7.4 pphm for sulfur dioxide.  相似文献   

13.
采用国产光电离色谱仪(GC-PID)对有机硫化物:乙基硫醇,二甲基硫,二甲基二硫进行了分离分析,其最小检知量在亚微克/升级,并对北京郊区的某些天然源环境样品进行了有机硫化物浓度的测定,实验数据证实,在鸡场,猪场,水稻田与塑料蔬菜大棚等环境大气中含有机硫化物。研究了硫酸铵作为氮肥加入到水浸土壤中后,由于缺氧而生成有机硫化物的现象,观察了其对有机硫化物的释放规律及硫酸铵与葡萄糖分别作为硫源与碳源对有机硫化物生成的影响,实验结果认为:硫酸铵在五种不同类型的水浸土壤中(环境温度25℃),均可解离释放出有机硫化物,随其在土壤中加入量的增多,释放气中的有机硫浓度增加,二甲基硫的释放量最大。  相似文献   

14.
We present the concentration trends and the atmospheric exposure of sulfur and nitrogen compounds in different transport sectors during the period 1981-2000, based on the air quality data of the Finnish Meteorological Institute. Sulfur and nitrogen concentrations in air and precipitation were assessed from background stations covering the whole country. A significant decrease of more than 60% was observed in the concentrations of all sulfur compounds throughout the country during 1981-2000. In the 1990's, significant trends were detected in all sulfur time series, with the exception of sulfate in precipitation at the northernmost stations. On the other hand, the concentrations of oxidized nitrogen compounds in air and precipitation have declined only slightly or not at all, especially in the 1990's. This is attributed to the fairly small domestic and European NO(x) emission reductions after 1981. The ammonium concentration in precipitation has declined by more than 50% during 1981-2000. The atmospheric sulfur exposure was found to be dominated by transport from the West and South-West sectors during summer, whereas in winter all the southward sectors were important. The largest decline in the sectoral sulfur concentrations has taken place already before 1991, with a more pronounced reduction during winter than during summer. The atmospheric nitrogen exposure was mainly dominated by transport from the sectors between west and south, but in the latter half of the study period there seems to have been a slight shift towards increased transport from the eastern and northern sectors.  相似文献   

15.
Atmospheric concentrations of nitric acid (HNO3), sulfur dioxide (SO2), particulate nitrate and particulate sulfate on the urban- and mountain-facing sides of Mt. Gokurakuji were measured from November 2002 to October 2003, in order to evaluate the effects of anthropogenic activity on air quality and dry deposited nitrate and sulfate on the surfaces of pine foliage. The results showed that HNO3, SO2 and concentrations were significantly higher (P < 0.05) on the urban-facing side (1.54, 2.48 and 0.65 μg m−3, respectively) than the mountain-facing side (0.67, 1.19 and 0.37 μg m−3, respectively), while concentrations did not differ significantly between the two sides (urban-facing: 2.80 μg m−3; mountain−facing: 2.05 μg m−3). Indirect estimates of dry deposition rates of nitrate and sulfate to the surfaces of pine foliage based on the measured concentrations approximately agreed with the measured values determined by the foliar rinsing technique in a previous study. It was found that HNO3 was the major source (approximately 80%) of dry deposited nitrate on pine foliage, while the contribution from was about equal to that from SO2. In conclusion, HNO3 and SO2 appear to be dominant species reflecting higher dry deposition rates of nitrate and sulfate on the urban-facing side compared to the mountain-facing side of Mt. Gokurakuji.  相似文献   

16.
Anekal Taluk lies in the southern part of the of Bangalore urban district, known for Bannerghatta wildlife sanctuary, Jigani industrial estate, silk industry, and the electronics city, the pride of India and hub of Bangalore's information technology. In the present study, evaluation of geochemistry of 28 representative bore wells samples from Anekal Taluk was undertaken. It was found that most of the samples (92.9%) belong to Ca(2+?)-Mg(2+?)-Cl(?-?) -SO2??water type with Ca-Mg-Cl and Ca-Cl hydrochemical facies. The groundwater sources were further categorized as normal chloride (32.14%) and normal sulfate (100%) water types based on Cl and SO(4) concentrations. Majority of the samples (64.3%) belong to C3-S1 water class, indicating water with high salinity and low sodium. Positive index of base exchange indicates the chloro-alkaline equilibrium in the study area. Groundwater potential zonation map for Anekal Taluk was generated using multiparametric and weighted overlay method using the spatial analyst tool in ArcGIS v9.2. Accordingly, five distinct classes corresponding to good(high), moderate (medium), moderate to poor (low), poor (very low), and poor to nil (very low) groundwater potential zones were identified in the region. Of this, 85.27% of the study area belongs to good/high to moderate/medium groundwater potential and only 14.73% belonging to moderate/poor to nil groundwater potential zones.  相似文献   

17.
Chemical composition of precipitation and its sources in Hangzhou, China   总被引:2,自引:0,他引:2  
To understand the origin and chemical characteristics of precipitation in Hangzhou, rainwater samples were collected from June 2006 to May 2008. All samples were analyzed for pH, electrical conductivity, and major ions (NH??, Ca2?, Mg2?, Na?, K?, SO?2?, NO??, F?, and Cl?). Acidification of precipitation in Hangzhou was serious with volume-weighted mean pH value of 4.5, while frequency of acid rain was 95%. The calculated SO?2?/NO?? ratio in Hangzhou precipitation was 2.87, which indicated that the precipitation of Hangzhou belonged to sulfate-based acid rain. The results of acid neutralization analysis showed that not all the acidity in the precipitation of Hangzhou was neutralized by alkaline constituents. The results of sea salt contribution analysis showed that nearly all SO?2?, Ca2?, and Mg2? and 33.7% of K? were of non-sea origins, while all Na? and Cl? and 66.3% of K? originated from sea sources. The principal component analysis which was used to analyze the sources of various ions indicated that chemical compositions of precipitation in Hangzhou mainly came from terrestrial sources, factory emissions, fuel wood burning, and marine sources.  相似文献   

18.
This paper presents the results of a feasability study for the preparation and certification of reference materials (RMs) for nitrogen dioxide (NO(2)) and sulfur dioxide (SO(2)) in diffusive samplers. RMs for NO(2) were prepared by exposure to gas mixtures in a chamber while the RMs for SO(2) were prepared by liquid spiking. Certification of RMs for NO(2) was found feasible with a certified uncertainty of 5.8% and a proposed shelf life of 5 years. The uncertainty was calculated with contribution from the homogeneity of preparation, stability and transport of the CRMs and from an external verification of the certified value. To reach 5.8% of uncertainty, the contribution of the differences between the results of analysis by ion chromatography and colorimetry must be eliminated. It is proposed to solve this by pre-extracting the samplers with water before analysis. The results of this study indicate that the samplers are stable for at least two years before and after exposure when stored in a refrigerator. By contrast, the certification of RMs for SO(2) was found to not be feasible due to instability problems. This instability was attributed to reaction of sulfate on the walls of the samplers. Alternatively, the preparation of RMs by simultaneous exposure to SO(2) and NO(2) has been tested. Satisfying homogeneities has been reached both for NO(2) and SO(2).  相似文献   

19.
A field campaign on aerosol chemical properties and trace gases measurements was carried out along the Delhi-Hyderabad-Delhi road corridor (spanning about 3,200 km) in India, during February 1-29, 2004. Aerosol particles were collected on quartz and cellulose filters using high volume (PM(10)) sampler at various locations along the route (i.e., urban, semi-urban, rural, and forest areas) and have been characterized for major cations (Na(+), Ca(2+), Mg(2+), K(+), and NH (4) (+)), anions (Cl(-), NO (3)(-), and SO (4)(2-)), and heavy metals (Cu, Cd, Fe, Zn, Mn, and Pb). Simultaneously, we measured NO(2) and SO(2) gases. These species show large spatial and temporal variations. The ambient PM(10) concentration has been observed to be the highest (55 ± 4 μg m(-3)) near semi-urban areas followed by forest areas (48 ± 2 μg m(-3)) and in rural areas (44 ± 22 μg m(-3)). The concentrations of NO( x ) (NO(2)+NO) and SO(2) ranged from 16 to 69 μg m(-3) and 4 to 11 μg m(-3), respectively. Among anions, NO(3)(-) and SO(4) (2-) are the major constituents of PM(10). The urban and semi-urban sites showed enhanced concentrations of Fe, Zn, Mn, Cd, and Pb. This study provide information about atmospheric concentrations of various species in the northern to central India, which may be important for policy makers to better understand the air quality of the region.  相似文献   

20.
The monthly maximum of the 24-h average time-series data of ambient air quality-sulphur dioxide (SO(2)), nitrogen dioxide (NO(2)) and suspended particulate matter (SPM) concentration monitored at the six National Ambient Air Quality Monitoring (NAAQM) stations in Delhi, was analysed using Box-Jenkins modelling approach (Box et al. 1994). Univariate linear stochastic models were developed to examine the degree of prediction possible for situations where only the past record of pollutant data are available. In all, 18 models were developed, three for each station for each of the respective pollutant. The model evaluation statistics suggest that considerably satisfactory real-time forecasts of pollution concentrations can be generated using the Box-Jenkins approach. The developed models can be used to provide short-term, real-time forecasts of extreme air pollution concentrations for the Air Quality Control Region (AQCR) of Delhi City, India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号