共查询到10条相似文献,搜索用时 46 毫秒
1.
Carbon capture and storage (CCS) is an economically attractive strategy for avoiding carbon dioxide (CO2) emissions from, e.g., power plants to the atmosphere. The combination of CCS and biomass combustion would result in a reduction of atmospheric CO2, or net negative emissions, as plant growth is a form of sequestration of atmospheric carbon. Carbon capture can be achieved in a variety of ways, one of which is chemical looping. Chemical-looping combustion (CLC) and chemical looping gasification (CLG) are two promising technologies for conversion of biomass to heat and power or syngas/methane with carbon capture. There have been significant advances made with respect to CLC in the last two decades for all types of fuel, with much less research on the gasification technology. CLG offers some interesting opportunities for production of biofuels together with carbon capture and may have several advantages with respect to the bench mark indirect gasification process or dual-bed fluidized bed (DFBG) in this respect. In CLG, an oxygen carrier is used as a bed material instead of sand, which is common in indirect gasification, and this could have several advantages: (i) all generated CO2 is present together with the syngas or methane in the fuel reactor outlet stream, thus in a concentrated stream, viable for separation and capture; (ii) the air reactor (or combustion chamber) should largely be free from trace impurities, thus preventing corrosion and fouling in this reactor; and (iii) the highly oxidizing conditions in the fuel reactor together with solid oxide surfaces should be advantageous with respect to limiting formation of tar species. In this study, two manganese ores and an iron-based waste material, LD slag, were investigated with respect to performance in these chemical-looping technologies. The materials were also impregnated with alkali (K) in order to gauge possible catalytic effects and also to establish a better understanding of the general behavior of oxygen carriers with alkali, an important component in biomass and biomass waste streams and often a precursor for high-temperature corrosion. The viability of the oxygen carriers was investigated using a synthetic biogas in a batch fluidized bed reactor. The conversion of CO, H2, CH4, and C2H4 was investigated in the temperature interval 800–950 °C. The reactivity, or oxygen transfer rate, was highest for the manganese ores, followed by the LD slag. The conversion of C2H4 was generally high but could largely be attributed to thermal decomposition. The K-impregnated samples showed enhanced reactivity during combustion conditions, and the Mangagran-K sample was able to achieve full conversion of benzene. The interaction of the solid material with alkali showed widely different behavior. The two manganese ores retained almost all alkali after redox testing, albeit exhibiting different migration patterns inside the particles. LD slag lost most alkali to the gas phase during testing, although some remained, possibly explaining a small difference in reactivity. In summary, the CLC and CLG processes could clearly be interesting for production of heat, power, or biofuel with negative CO2 emissions. Manganese ores are most promising from this study, as they could absorb alkali, giving a better conversion and perhaps also inhibiting or limiting corrosion mechanisms in a combustor or gasifier. 相似文献
2.
Mitigation and Adaptation Strategies for Global Change - Bioenergy with carbon dioxide (CO2) capture and storage (BECCS) technologies represent an interesting option to reach negative carbon... 相似文献
3.
This article provides an introduction to this Special Issue of Journal of Cleaner Production (JCLP), which contains thirteen, carefully selected articles from the 12th Conference, “Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction” – PRES'09. This issue builds upon the multi-year co-operation between the PRES conference planners and the JCLP. The articles cover important subjects of increased efficiency in energy generation and usage and in improvements in industrial process optimisation. The first group of five papers focuses upon recent advances in emissions reduction and the resulting energy penalties. The second group of four papers deals with improving the efficiency and reliability in the utilisation of renewable energy, where hydrogen and biodiesel are the key energy carriers. The final group of three papers focus on process integration challenges of sustainable energy systems and upon the challenges of industrial/societal integration of sustainable energy systems into regional sustainable development planning. 相似文献
4.
Chemical-looping combustion (CLC) is a combustion process with inherent separation of carbon dioxide (CO2), which is achieved by oxidizing the fuel with a solid oxygen carrier rather than with air. As fuel and combustion air are never mixed, no gas separation is necessary and, consequently, there is no direct cost or energy penalty for the separation of gases. The most common form of design of chemical-looping combustion systems uses circulating fluidized beds, which is an established and widely spread technology. Experiments were conducted in two different laboratory-scale CLC reactors with continuous fuel feeding and nominal fuel inputs of 300 Wth and 10 kWth, respectively. As an oxygen carrier material, ground steel converter slag from the Linz–Donawitz process was used. This material is the second largest flow in an integrated steel mill and it is available in huge quantities, for which there is currently limited demand. Steel converter slag consists mainly of oxides of calcium (Ca), magnesium (Mg), iron (Fe), silicon (Si), and manganese (Mn). In the 300 W unit, chemical-looping combustion experiments were conducted with model fuels syngas (50 vol% hydrogen (H2) in carbon monoxide (CO)) and methane (CH4) at varied reactor temperature, fuel input, and oxygen-carrier circulation. Further, the ability of the oxygen-carrier material to release oxygen to the gas phase was investigated. In the 10 kW unit, the fuels used for combustion tests were steam-exploded pellets and wood char. The purpose of these experiments was to study more realistic biomass fuels and to assess the lifetime of the slag when employed as oxygen carrier. In addition, chemical-looping gasification was investigated in the 10 kW unit using both steam-exploded pellets and regular wood pellets as fuels. In the 300 W unit, up to 99.9% of syngas conversion was achieved at 280 kg/MWth and 900 °C, while the highest conversion achieved with methane was 60% at 280 kg/MWth and 950 °C. The material’s ability to release oxygen to the gas phase, i.e., CLOU property, was developed during the initial hours with fuel operation and the activated material released 1–2 vol% of O2 into a flow of argon between 850 and 950 °C. The material’s initial low density decreased somewhat during CLC operation. In the 10 kW, CO2 yields of 75–82% were achieved with all three fuels tested in CLC conditions, while carbon leakage was very low in most cases, i.e., below 1%. With wood char as fuel, at a fuel input of 1.8 kWth, a CO2 yield of 92% could be achieved. The carbon fraction of C2-species was usually below 2.5% and no C3-species were detected. During chemical-looping gasification investigation a raw gas was produced that contained mostly H2. The oxygen carrier lifetime was estimated to be about 110–170 h. However, due to its high availability and potentially low cost, this type of slag could be suitable for large-scale operation. The study also includes a discussion on the potential advantages of this technology over other technologies available for Bio-Energy Carbon Capture and Storage, BECCS. Furthermore, the paper calls for the use of adequate policy instruments to foster the development of this kind of technologies, with great potential for cost reduction but presently without commercial application because of lack of incentives. 相似文献
5.
在下部为喷流-移动床热解室、上部为气相燃烧室的两段反应器内,利用实验室中制备的RDF对其在该反应器中进行部分燃烧部分热解然后气相燃烧特性进行了研究.RDF颗粒连续加入到热解室中,实现了在少量空气作用下部分燃烧并在较低温度下部分热解,热解气体与二次空气在上部燃烧室中高温燃烧.本文主要考察了热解室进风量(热解室温度)和二次风量(燃烧室温度)对NOX和CO释放特性的影响. 相似文献
6.
In November 2014, the United States of America (USA) and the People’s Republic of China (China) governments announced their carbon emission reduction targets by 2030. The objective of this paper is to quantitatively project the two countries’ carbon emission reductions that will likely contribute to or facilitate the global climate change mitigation commitment and strategies in Paris in 2015. A top-down approach is used to analyze the relationship between China economic development and energy demand and to identify potentials of energy savings and carbon emission reduction in China. A simple time series approach is used to project carbon emission reduction in the USA. The predictions drawn from the analysis of this paper indicate that both China and the USA should use energy efficiency as first tool to achieve their carbon emission reduction goals. 相似文献
7.
在热重和红外联用进行等温实验的基础上,探讨了氧体积分数为10%、20%,970-1150℃温度范围内化学链燃烧过程中钙基载氧体再生(cas)的氧化特性-结果显示,CaS氧化的直接产物主要为CaSO4,只有在诱导期生成极少量CaO和SO2;但CaSO4与CaS还可进一步反应,生成更多Can和S02.通过对氧气浓度和温度的实验条件改变,研究了CaS04的转化率、转化速率,并辅以S02析出速率分析,获得了CaSO4相对于CaO的瞬时选择性、Ca.SO4的收率和反应选择率.结果表明,钙基载氧体CaSO.再生过程氧化反应的适宜条件为温度970-1000℃以及较高的氧气气氛.这不仅可以抑制S02的排放量从而得到较高的反应选择率.同时反应过程也具有较高的转化速率. 相似文献
8.
The analysis of industrial energy usage indicates that low temperature processes (20 ≈ 200 °C) are used in nearly all industrial sectors. In principle there is the potential to use solar thermal energy in these lower temperature processes thus, reducing the environmental impact of burning fossil fuels. Using the model of an Austrian dairy plant, this research investigated the potential for, and the economic viability of, using solar energy heat processes in industry.Some industrial sectors such as food, chemistry, plastic processing, textile industry, building materials industry and business establishments can be identified as potential sectors for the application of solar energy heat processes. When assessing the (economic) feasibility of solar thermal energy, the investigation of these industries’ energy systems has to focus on an integrated analysis of cooling and heating demands and to take into account competing technologies. Amongst these are heat integration, cogeneration, new technologies and heat pumps. Pinch analysis was used to investigate industrial energy systems and heat integration possibilities and proved to be a viable tool. Working from the basis of energy balances, Sankey diagrams, pinch analysis and environmental cost accounting, a newly developed investigation tool was applied in the case study of an Austrian dairy plant. This enabled a fast optimization of the system. Two different options for the integration of solar thermal energy into the production line were calculated, option 1 with a solar field of 1000 m 2 and option 2 with a solar field of 1500 m 2. Natural gas savings of 85,000 for option 1 and 109,000 m 3/a for option 2 can be achieved, resulting in a reduction of 170 tons of CO 2 per year, or 218 tons for options 1 and 2 respectively. Based upon option 1, return on investment is realised after less than three years of implementation. This research thus, indicates promising technical and economical feasibility of using solar thermal energy for industrial processes and provides an important step towards sustainable zero emission production in industry. 相似文献
9.
Arsenic(As)pollution in soils is a pervasive environmental issue.Biochar immobilization offers a promising solution for addressing soil As contamination.The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar.However,the influence of a specific property on As immobilization varies among different studies,and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge.To enhance immobilization efficiency and reduce labor and time costs,a machine learning(ML)model was employed to predict As immobilization efficiency before biochar application.In this study,we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to con-struct three ML models.The results demonstrated that the random forest(RF)model out-performed gradient boost regression tree and support vector regression models in predictive performance.Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization.These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils.Furthermore,the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization.These insights can fa-cilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency. 相似文献
10.
The cement industry is characterisedby intensive energy consumption throughout itsproduction stages which, together with the calcinationof its raw materials, accounts for significant amountsof greenhouse gases (GHG) emissions. In 1996, theBrazilian cement industry consumed 4.3% of the energyrequired by the industrial sector, contributing over22 Tg (Teragrams) of CO 2. The prospects forgrowth in this sector in Brazil indicate risingdemands for fossil fuels, with a consequent upsurge inemissions. This article aims to present the prospectsfor energy conservation in the Brazilian cementindustry through to 2015, taking into account: theintroduction of new production technologies in thissector, the use of waste and low-grade fuels,cogeneration, the use of cementitious materials, andother measures, based on a technical and economicenergy demand simulation model. In all scenarios, wefound that is possible to significantly reduce energyconsumption and CO 2 emissions for BrazilianCement Industry. Under the market potential scenarios,energy savings vary between 1562.0 to 1900.6 PJ(PetaJoules), with use of cementitious materialsaccounting for around 31% of this total. Fortechnical potential scenarios, use of cementitiousmaterials could represent 51% to 52% of totalachieved energy savings, between 2374.6 to 2803.4 PJ. 相似文献
|