首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The European Union has defined environmental quality standards (EQSs) for surface waters for priority substances and several other pollutants. Furthermore national EQSs for several chemicals are valid in Austria. The study investigated the occurrence of these compounds in municipal wastewater treatment plant (WWTP) effluents. In a first screening of 15 WWTPs relevant substances were identified, which subsequently were monitored in 9 WWTPs over 1 year (every 2 months). Out of 77 substances or groups of substances (including more than 90 substances) 13 were identified as potentially relevant in respect to water pollution and subjected to the monitoring, whereas most other compounds were detected in concentrations far below the respective EQS for surface waters and therefore not further considered. The preselected 13 compounds for monitoring were cadmium (Cd), nickel (Ni), copper (Cu), selenium (Se), zinc (Zn), diuron, polybrominated diphenyl ethers (PBDEs), di(ethyl-hydroxyl)phthalate (DEHP), tributyltin compounds (TBT), nonylphenoles (NP), adsorbable organic halogens (AOX) and the complexing agents ethylenediaminetetraacetic acid (EDTA) as well as nitrilotriacetic acid (NTA). In the effluents of WWTPs the concentrations of the priority substances Cd, NP, TBT and diuron frequently exceeded the respective EQS, whereas the concentrations for DEHP and Ni were below the respective EQS. The effluent concentrations for AOX, EDTA, NTA, Cu, Se and Zn frequently are in the range or above the Austrian EQS for surface waters. Besides diuron and EDTA all compounds are removed at least partially during wastewater treatment and for most substances the removal via the excess sludge is the major removal pathway. For the 13 compounds which were monitored in WWTP effluents population equivalent specific discharges were calculated. Since for many compounds no or only few information is available, these population equivalent specific discharges can be used to assess emissions from municipal WWTPs to surface waters as well as to make a first assessment of the impact of a discharge on surface waters chemical status. Comparing discharges and river pollution on a load basis, the influence of diffuse sources becomes obvious and therefore should also be taken into consideration in river management.  相似文献   

2.
A comparative assessment of the risks of three effluent disposal alternatives currently available to wastewater utilities in Southeast Florida is presented in this paper. The alternatives are: deep well injection and ocean outfalls following secondary treatment, and surface water (canal) discharges following secondary wastewater treatment, filtration and nutrient removal. Water quality data, relative to disposal of wastewater treatment plant effluent were gathered, along with water quality data on the receiving waters, from utilities. Comparisons and conclusions regarding potential health concerns associated with the three disposal alternatives are presented. The results indicated that health risks associated with deep wells were generally lower than those of the other two alternatives. The proximity of injection wells to aquifer storage and recovery wells was a determining factor relative to injection well risk. Urban ecological risks were also indicated to be lower, though impacts of urban water use/reuse to the Everglades were not studied. Additional data collection and analysis were recommended to understand the effects of wastewater management on the cycling of water, nutrients and other constituents on southeast Florida. In particular, it was recommended that monitoring of effluents for nitrosamines and pharmaceutically active substances be implemented on a broad scale.  相似文献   

3.
The environmental impacts of municipal wastewater discharges on receiving waters are numerous and inputs of contaminants such as metals can cause toxicity to organisms in receiving waters. The effluents generated by the treatment plant of the city of Montreal, Canada, the largest such facility in the St. Lawrence Valley, was investigated to determine the environmental fate of trace metals in the receiving waters. Total and extractable metal concentrations were determined and physico-chemical parameters were measured to characterize the receiving waters and evaluate their influence on the fate and behaviour of metals released from the urban effluent. Our results showed that particulate metals near the effluent discharge point are highly reactive and their distribution seems to be significantly influenced by the abundance of HCl-reactive iron and manganese, which act as trace-metal carriers. The partitioning of metals between dissolved and particulate phases varies along the effluent dispersion plume and therefore could strongly influence the exposure routes for aquatic organisms that are exposed to the various contaminants released from the effluent.  相似文献   

4.
The implementation of new legislation such as the Water Framework Directive (WFD) requires Member States to gain a better understanding of priority substances entering surface waters. This will include inputs from wastewater treatment works as well as from other urban, industrial and agricultural sources. There is currently a lack of available data regarding the magnitude and sources of organic priority substances entering treatment works. As a consequence the concentrations of organic priority substances including PAHs, surfactants, polybrominated diphenylethers (PBDEs), diethylhexyl phthalate (DEHP), pesticides and solvents were determined in the wastewater from an urban catchment located in the UK, as part of a project undertaken for UK Water Industry Research (UKWIR). Most organic priority substances were detected in the microg/l range. Significant variations in the concentration of linear alkylbenzene sulphonate (LAS), DEHP, PBDEs and nonylphenol ethoxylates (NPEOs), in particular, were observed for the different sources. The greatest differences were evident between new and older domestic discharges. Solvent levels varied considerably reflecting use and production within the catchment. Chloroform levels were highest in domestic effluent, while trichloroethene and tetrachloroethene were detected only in commercial samples.  相似文献   

5.
A copper-cadmium-nickel-zinc mixture was assessed in seven different river waters to study metal toxicity to the ciliate protozoan Colpidium campylum, the interactions occurring between metals, and the influence of the receiving water on toxicity. In the range of concentrations tested, which are representative of electroplating industry wastes, the main part of the toxicity can be attributed to copper and to cadmium-copper synergy. A classification of waters, based on a principal component analysis (PCA), was used to examine the main parameters of the water, which can affect the toxicity of metal mixtures. It appears that the mineralization of the water, more than the total organic carbon (TOC), is an important parameter for the expression of toxicity. A strategy for the estimation of ecotoxicological hazard assessment, based on a simplified factorial experiment is proposed. It enables one to study, in a two-step bioassay, the toxicity of an effluent, the influence of river water on its toxicity, and the effects of contact time and dilution. By applying PCA to data from very different waters, it may be possible to estimate the ecotoxicological risk associated with the discharge of an effluent, on the basis of the chemistry of the receiving water.  相似文献   

6.
An in situ toxicity and bioaccumulation assessment approach is described to assess stressor exposure and effects in surface waters (low and high flow), the sediment-water interface, surficial sediments and pore waters (including groundwater upwellings). This approach can be used for exposing species, representing major functional and taxonomic groups. Pimephales promelas, Daphnia magna, Ceriodaphnia dubia, Hyalella azteca, Hyalella sp., Chironomus tentans, Lumbriculus variegatus, Hydra attenuatta, Hexagenia sp. and Baetis tibialis were successfully used to measure effects on survival, growth, feeding, and/or uptake. Stressors identified included chemical toxicants, suspended solids, photo-induced toxicity, indigenous predators, and flow. Responses varied between laboratory and in situ exposures in many cases and were attributed to differing exposure dynamics and sample-processing artifacts. These in situ exposure approaches provide unique assessment information that is complementary to traditional laboratory-based toxicity and bioaccumulation testing and reduce the uncertainties of extrapolating from the laboratory to field responses.  相似文献   

7.
A simple partitioning scheme was used to assess the partitioning and behaviour of copper, cadmium, iron, lead and manganese within the surface waters and sediments of the River Yare, Norfolk, UK, following the discharge of final effluent to the water course from municipal sewage treatment works (STW). Sewage effluent discharges were shown to increase metal concentrations and complexation capacities in receiving waters, but the tidal nature of the river meant that surface water monitoring could not accurately pinpoint the contamination source or the main metal partitioning trends. Sediments formed a more stable base on which to perform contaminant studies: these revealed that metals discharged from the STW rapidly accumulated in bottom deposits in relative stable chemical forms.  相似文献   

8.
Bisphenol A (BPA) (CAS 80-05-7) was analyzed in receiving waters upstream and downstream of US manufacturers (1996 and 1997) and processors (1997) during seasonal low flow periods. BPA was not detected (< 1 microgram/l) in any surface water sample in 1996 or at six of seven sites in 1997. Concentrations near the seventh site ranged from 2 to 8 micrograms/l; however, its receiving stream had no measurable flow and concentrations represent undiluted effluent. All surface water concentrations from this and other studies were less than the freshwater predicted no effect concentration (PNEC) of 64 micrograms/l, suggesting that BPA discharges from manufacturing and processing facilities to surface water do not pose an environmental concern.  相似文献   

9.
The occurrence and estimated concentration of twenty illicit and therapeutic pharmaceuticals and metabolites in surface waters influenced by wastewater treatment plant (WWTP) discharge and in wastewater effluents in Nebraska were determined using Polar Organic Chemical Integrative Samplers (POCIS). Samplers were installed in rivers upstream and downstream of treated WWTP discharge at four sites and in a discharge canal at a fifth location. Based on differences in estimated concentrations determined from pharmaceuticals recovered from POCIS, WWTP effluent was found to be a significant source of pharmaceutical loading to the receiving waters. Effluents from WWTPs with trickling filters or trickling filters in parallel with activated sludge resulted in the highest observed in-stream pharmaceutical concentrations. Azithromycin, caffeine, 1,7-dimethylzanthine, carbamazepine, cotinine, DEET, diphenhydramine, and sulfamethazine were detected at all locations. Methamphetamine, an illicit pharmaceutical, was detected at all but one of the sampling locations, representing only the second report of methamphetamine detected in WWTP effluent and in streams impacted by WWTP effluent.  相似文献   

10.
《Chemosphere》2009,74(11):1845-1852
Large volumes of wastewater with a high organic load are generated by the pulp and paper industry that negatively affect the quality of receiving waters. The main waste products in the pulp mill effluents are lignin derived macromolecular compounds, which are similar to natural humic substances and very resistant to wastewater treatments. Fulvic acids (FA) represent the higher percentage of these humic substances and it was observed that solar irradiation modify their properties. Several analytic tools, namely, UV–Visible, molecular fluorescence and FTIR spectroscopies, were used to assess the effect of solar exposition on fulvic acids from a kraft pulp mill effluent. It may be concluded that sun irradiation may alter to a high extent the physicochemical properties of macromolecular organic matter, namely fulvic acids, released by kraft pulp mill effluents. After solar exposition, the aromaticity decreases, the aliphatic structures become more oxygenated, and the fulvic acids from the pulp mill effluent remaining in solution are more similar to aquatic fulvic acids from non polluted sites.  相似文献   

11.
Carvalho SI  Otero M  Duarte AC  Santos EB 《Chemosphere》2008,73(11):1845-1852
Large volumes of wastewater with a high organic load are generated by the pulp and paper industry that negatively affect the quality of receiving waters. The main waste products in the pulp mill effluents are lignin derived macromolecular compounds, which are similar to natural humic substances and very resistant to wastewater treatments. Fulvic acids (FA) represent the higher percentage of these humic substances and it was observed that solar irradiation modify their properties. Several analytic tools, namely, UV–Visible, molecular fluorescence and FTIR spectroscopies, were used to assess the effect of solar exposition on fulvic acids from a kraft pulp mill effluent. It may be concluded that sun irradiation may alter to a high extent the physicochemical properties of macromolecular organic matter, namely fulvic acids, released by kraft pulp mill effluents. After solar exposition, the aromaticity decreases, the aliphatic structures become more oxygenated, and the fulvic acids from the pulp mill effluent remaining in solution are more similar to aquatic fulvic acids from non polluted sites.  相似文献   

12.
《Chemosphere》1987,16(7):1501-1507
In establishing chemical environmental safety a hazard assessment using environmental exposure and effects information is required. Environmental degradation information is factored into estimates of exposure. The environmental degradation of polycarbonate grade Bisphenol A 2,2′-Bis (p-hydroxyphenyl propane) CAS#80-05-7, used in the manufacture of plastics, was measured using local waters in the Houston Ship Channel. A spike of 3 mg/l BPA was added to four laboratory units containing fresh water (control), Houston Ship Channel water, Patricks Bayou water (200 yards downstream from a BPA chemical plant discharge), and the chemical plant treated process effluent. Greater than 90% degradation was observed in all treatments except the control within four days. The initiation of biodegradation in the units was in the following order: effluent> Patricks Bayou> Houston Ship Channel.  相似文献   

13.
Sediments were collected from a stream (upstream, outfall and downstream) receiving copper laden catfish pond effluent to assess toxicity to non-target biota. No significant reduction in Hyalella azteca survival or growth (10 d), or Typha latifolia germination and root and shoot growth (7 d) were observed after exposure to upstream and outfall sediments. A significant reduction in H. azteca survival was observed after exposure to the downstream sediment sample; however, no reduction in T. latifolia germination or seedling growth was detected. Bulk sediment copper concentrations in the upstream, outfall and downstream samples were 29, 31, and 25 mg Cu/kg dry weight, respectively. Interstitial water (IW) concentrations ranged from 0.053 to 0.14 mg Cu/l with 10 d IW toxicity units > or = 0.7. Outfall samples were amended with additional concentrations of copper sulfate so that bulk sediment measured concentrations in the amended samples were 172, 663, 1245, and 1515 mg Cu/kg dry weight. Survival was the most sensitive endpoint examined with respect to H. azteca with a no observed effects concentration (NOEC) and lowest observed effects concentration (LOEC) of 1245 and 1515 mg Cu/kg, respectively. NOEC and LOEC for T. latifolia root growth were 663 and 1245 mg Cu/kg, respectively. IW copper concentrations were > or = 0.86 mg Cu/l with H. azteca intersitial water toxicity unit (IWTU) concentrations > or = 1.2. Sequential extraction qualitatively revealed the carbonate and iron oxide fractions which accounted for a majority of the copper binding. In this instance, the copper which was applied to catfish ponds does not appear to be adversely impacting the receiving stream system.  相似文献   

14.
Féray C  Montuelle B 《Chemosphere》2003,50(7):919-928
Nitrification is a microbial key step of the nitrogen cycle, which performs the oxidation of ammonium to nitrate, via nitrite. In aquatic environments, it mainly takes place in the sediment or is associated with suspended particles. Wastewater treatment plant (WTP) discharges in rivers may disrupt sediment nitrification: this impact is related to nitrogen inputs (mainly NH(4)(+) and organic nitrogen) but could also depend on the nitrifying bacteria inputs which have been proved to survive downstream WTP discharge points. The aim of the present study was to assess the effect of NH(4)(+) and nitrifying bacteria inputs on the two steps of nitrification in freshwater sediments.To avoid natural sites constraints and to control the main environmental parameters, we used microcosms to simulate a river receiving different types of WTP discharges. These microcosms were composed of five glass dual-walls reactors (6 l) containing sediment and continuously filled (controlled flow) with river water and WTP effluent. Two types of effluents were tested: a non-nitrified one (high NH(4)(+) input, very few nitrifying bacteria) and a nitrified one (low NH(4)(+) input, more nitrifying bacteria), at different effluent/freshwater ratios (0/100, 20/80, 40/60 and 80/20). Changes in the ammonium- and nitrite-oxidizing communities were assessed by the Most Probable Number method, and changes in potential ammonium-oxidizing activity and potential nitrite-oxidizing activity were determined by incubations with specific inhibitors (sodium chlorate and allylthiourea).In most of the cases the presence of effluent induced significant changes of the nitrifying bacteria densities and potential activities in the sediment. This effect indicates generally a loss of specific potential activity and in most of the time is significant for a high effluent/river water ratio (40% to 80%). In our experimental conditions and in the case of a large WTP discharge, the nitrifying potential in freshwater sediments could thus be significantly modified.  相似文献   

15.
Alkylphenols (APs), alkylphenol ethoxylates (APEOs), ethoxycarboxylate metabolites (APECs) and bisphenol A were determined in surface water using solid-phase extraction (SPE) followed by triple-quadrupole LC-MS-MS. APs were separated by LC from APECs using an acetonitrile-water-gradient without the addition of any buffer. Nonylphenol ethoxycarboxylates (NPECs) interfere in the detection of nonylphenols (NPs) when using an acidic mobile phase, because they produce the same MS-MS fragment ions (219>133 and 147). 4n-NP shows the characteristic transition 219>106; it is well suited as internal standard. Nonylphenol ethoxylates NPE(n)Os (n=1-17) were analysed separately in a second run by positive ionization using an ammonium acetate mobile phase. Textile industry discharges, the corresponding wastewater treatment plant (WWTP) effluents and the receiving rivers in Belgium and Italy were analysed. Among the substances investigated, NPE1C and NPE2O exhibited the highest concentrations in the water samples, up to 4.5 microg l(-1) NPE1C in a WWTP effluent and 3.6 microg l(-1) NPE2O in a river. The highest NP levels were found in the receiving rivers (max. 2.5 microg l(-1)). The predicted no-effect concentration (PNEC) for NP of 0.33 microg l(-1) for water species was frequently exceeded in the surface waters investigated, suggesting potential adverse effects to the aquatic environment.  相似文献   

16.
分别利用小麦、发光菌毒性测试技术研究了模拟丙烯腈废水以及几种处理工艺出水对小麦芽伸长、根伸长、发芽率和发光菌发光度的毒性效应差异。结果表明,丙烯腈对小麦芽伸长的毒性影响最大;各类物质对小麦根伸长和发芽率并未造成毒性影响;其他物质对发光菌发光度的毒性最大。模拟废水对小麦芽伸长、根伸长、发芽率和发光菌发光度的毒性效应分别为:部分相加、部分相加、协同和拮抗作用。几种处理工艺出水对上述指标的毒性影响顺序依次是:模拟废水加成出水活性炭吸附出水Fenton法出水;Fenton法出水模拟废水加成出水活性炭吸附出水;Fenton法出水活性炭吸附出水模拟废水加成出水;活性炭吸附出水加成出水Fenton法出水模拟废水。比较几种处理工艺出水的毒性发现,几乎每种废水的毒性都有所降低,这说明几种处理工艺能有效降低模拟废水的毒性,具有深刻的实际指导意义。  相似文献   

17.
The effects of wastewater treatment on the proportion of Escherichia coli and Enterococcus sp. resistant to specific antibiotics were investigated at two facilities in Davis County, Utah, one of which received hospital waste. Samples were taken from the influent, effluent before disinfection, and secondary anaerobic sludge digester effluent. There was very little difference in antibiotic resistance among E. coli in the inflow waters of the plants but the plant receiving hospital waste had a significantly higher proportion of antibiotic resistant Enterococcus. The effect of wastewater treatment on antibiotic resistance was more pronounced on enterococci than E. coli. Although some increases in antibiotic resistance were observed, the general trend seemed to be a decrease in resistance, especially in the proportion of multidrug resistant Enterococcus sp.  相似文献   

18.
The ability of microorganisms in a wide range of river waters and activated sludges to degrade the heterocyclic compound morpholine was determined by die-away tests and also by most probable number counts of the morpholine degrading microbes. All activated sludges were capable of morpholine degradation but the rate at which degradation occurred could not be related to the type of influent treated. Nearly all river waters contained morpholine degrading microbes which could degrade morpholine in die-away tests. Generally, biodegradation of morpholine occurred more rapidly the further down stream the sample was taken. Morpholine degradation rates could not, however, be related to the immediate severity of pollution (as measured by National Water Council (NWC) classification) at any sampling site. It may be that morpholine degradation rate is related to the cumulative effects of successive discharges of polluting effluents rather than the immediate effect of any particular discharge. Clearly, the capacity to degrade morpholine exists in rivers and activated sludges from sewage works; in practice, however, the rates of degradation observed are very low and it is unlikely that significant morpholine biodegradation generally occurs in these systems.  相似文献   

19.
Effluents are a main source of direct and often continuous input of pollutants into aquatic ecosystems with long-term implications on ecosystem functioning. Therefore, the study of the effects of effluent exposure on organisms, populations or communities within the framework of impact assessment has a high ecological relevance. The aim of this study was to assess the toxicological impact of two effluents, one household wastewater treatment effluent (Effluent 1) and one industrial effluent (Effluent 2), on the receiving aquatic ecosystem using two test species under both in situ and laboratory conditions. Zebra mussel (Dreissena polymorpha) and common carp (Cyprinus carpio) were exposed under laboratory conditions in an online monitoring flow-through system (receiving different concentrations of Effluent 2) and under in situ conditions along the pollution gradient established by these two effluent discharges. Bioassays focussed on growth and condition related endpoints (i.e. condition, growth, lipid budget), since these are key functional processes within organisms and populations. Under laboratory conditions, increasing concentrations of the industrial effluent (Effluent 2) had a negative effect on both zebra mussel and carp energy reserves and condition. Under in situ conditions, the same negative impact of Effluent 2 was observed for zebra mussels, while Effluent 1 had no apparent effect on exposed zebra mussels. Carp growth and condition, on the other hand, were significantly increased at the discharge sites of both effluents when compared to the reference site, probably due to differences in food availability. The results indicate that a combination of in situ and laboratory exposures can illustrate how ecological processes influence bioassay studies. The incorporation of indirect, ecological effects, like changes in food availability, provides considerable benefit in understanding and predicting effects of effluents on selected species under realistic exposure conditions.  相似文献   

20.
In recent years growing attention has been paid toward the discharge, presence and potential adverse effects of pharmaceuticals in the environment. Using different existing analytical methods several studies have already identified a variety of drugs in waste-, surface- and drinking water. The monitoring of surface waters for drugs is of great importance because drugs are designed to be biological very active substances. A capillary LC/ES-MS-MS method has been developed that enables the sensitive and specific detection of diazepam in water samples up to 0.1 ng/ml (LOD). It requires neither multiple extraction steps, nor the use of large volumes of organic solvent. Applying this assay we have detected diazepam in 'in/effluent samples' collected in Belgium and demonstrated the applicability for water analysis without off-line pre-concentration of the analyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号