首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Industrial SO2 is the most important air pollutant in China. This paper outlines the technological impacts on industrial SO2 emissions in China in terms of: amount, intensity, structure of energy consumption and structure of energy-intensive industries. It shows that industrial SO2 emissions have linear growth alongside increases in energy consumption, particularly the rise in coal consumption. The contribution of technological factors to decreases in the intensity of energy consumption is 25%, while the structural factor is 75%. The power industry accounts for 52.6% of total industrial SO2. Optimisation of the structure of energy consumption can reduce SO2 emissions by 1.98 million tonnes per year. We propose the following technological strategies for industrial SO2 abatement: adjustment of the system and structure of thermal power generating units, acceleration of flue gas desulphurisation projects, transformation of industrial structures, development of eco-industries and a reduction in energy consumption per unit product. In addition, an effective way to abate industrial SO2 emissions is to promote governance strategies to stricly enforce SO2 emission standards, conduct emission trading, and formulate incentives for encouraging cleaner production and clean energy development.  相似文献   

2.
Background The use of natural gas has increased in the last years. In the future, its import supply and transport structure will diversify (longer distances, higher share of LNG (liquefied natural gas), new pipelines). Thus the process chain and GHG emissions of the production, processing, transport and distribution might change. Simultaneously, the injection of bio methane into the natural gas grid is becoming more important. Although its combustion is regarded as climate neutral, during the production processes of bio methane GHG emissions are caused. The GHG emissions occurring during the process chain of energy fuels are relevant for the discussion on climate policy and decision making processes. They are becoming even more important, considering the new Fuel Quality Directive of the EU (Dec. 2008), which aims at controlling emissions of the fuel process chains. Aim In the context of the aspects outlined above the aim is to determine the future development of gas supply for Germany and the resulting changes in GHG emissions of the whole process chain of natural gas and bio methane. With the help of two gas consumption scenarios and an LCA of bio methane, the amount of future emissions and emission paths until 2030 can be assessed and used to guide decision processes in energy policy. Results and discussion The process chain of bio methane and its future technical development are outlined and the related emissions calculated. The analysis is based on an accompanying research study on the injection of bio methane to the German gas grid. Two types of biogas plants have been considered whereof the “optimised technology” is assumed to dominate the future market. This is the one which widely exploits the potential of process optimisation of the current “state of the art” plant. The specific GHG emissions of the process chain can thus be nearly halved from currently 27.8?t CO2-eq./TJ to 14.8?t CO2-eq./TJ in 2030. GHG emissions of the natural gas process chain have been analysed in detail in a previous article. Significant modifications and a decrease of specific emissions is possible, depending on the level of investment in the modernisation of the gas infrastructure and the process improvements. These mitigation options might neutralise the emission increase resulting from longer distances and energy intensive processes. In the last section two scenarios (low and high consumption) illustrate the possible development of the German gas supply until 2030, given an overall share of 8–12?% of bio methane. Considering the dynamic emission factors calculated in the former sections, the overall gas emissions and average specific emissions of German gas supply can be given. The current emissions of 215.4 million t CO2-eq. are reduced by 25?% in the low-consumption scenario (162 million t CO2-eq.), where consumption is reduced by 17?%. Assuming a consumption which is increased by 17?% in 2030, emissions are around 7?% higher (230.9 million t CO2-eq.) than today. Conclusions Gaseous fuels will still play a significant role for the German energy supply in the next two decades. The GHG emissions mainly depend on the amount of gas used. Thus, energy efficiency will be a key issue in the climate and energy related policy discussion. A higher share of bio methane and high investments in mitigation and best available technologies can significantly reduce the emissions of the process chain. The combustion of bio methane is climate neutral compared to 56?t CO2/TJ caused by the direct combustion of natural gas (or 111?t CO2/TJ emitted by lignite). The advantage of gaseous energy carriers with the lowest levels of GHG emissions compared to other fossil fuels still remains. This holds true for fossil natural gas alone as well as for the expected future blend with bio-methane.  相似文献   

3.
Biodiesel from non-grain feedstock has been considered as one of the proper substitutes for fossil fuels associated with a series of activities emerging in China in order to meet the resource shortage and develop the energy crops. This paper presents an ecological accounting framework based on embodied energy, emergy, and CO2 emission for the whole production chain of biodiesel made from Jatropha curcas L. (JCL) oil. The energy and materials invested in and CO2 emission from the whole process, including cropping, transportation, extraction, and production, are accounted and calculated. Also, EmCO2, the ratio of real CO2 released to the emergy-based sustainability indicator per joule biodiesel, is proposed in this paper to present a new goal function for low-carbon system optimization. Finally, the results are compared with those of the bioethanol (wheat) production in Henan Province, China, and bioethanol (corn) production in Italy in view of the indices of embodied energy, emergy and CO2 emissions and EmCO2.  相似文献   

4.
This paper examines long-run and short-run dynamics of renewable energy consumption on carbon dioxide (CO2) emissions and economic growth in the European Union. This study employs cointegration tests, Granger causality tests and vector error correction estimates to examine the direction of Granger causality, the long-run dynamics of economic growth and energy variables on carbon emissions. This study analyses time series data from the World Development Indicators over the period from1961 to 2012. The results of this study support a link between renewable energy consumption, economic growth, industrialization, exports and CO2 emissions in the long-run and short-run. The results support that the sign of the long-run dynamics from the endogenous variables to the CO2 emissions variable is negative and significant, which implies that the energy and environmental policies of the European Union aimed at curbing CO2 emissions must have been effective in the long-term. Furthermore, renewable energy consumption and exports have significant negative impact on CO2 emissions in the short-run. However, industrialization and economic growth have positive impact on CO2 emissions in the short-run. The results suggest that both economic growth and industrialization must have been achieved at the cost of harming the environment. The finding suggests that the increasing consumption of renewable energy tends to play an important role in curbing carbon emissions in the region.  相似文献   

5.
This paper examines the relationship among carbon dioxide (CO2) emissions, GDP, and energy in the Middle East and North Africa (MENA) countries by using a Responsiveness Scores (RS) approach. Empirical results over the period 1971–2013 suggest that GDP per capita and energy consumption show positive RSs, while trade and urban population negative ones. Moreover, energy consumption and urban population reveal moderate increasing returns to scale, while GDP per capita exhibits decreasing positive returns. Furthermore, three-way factors analysis sets out that most of the countries lays on regions with moderate negative Total Responsiveness Scores (TRS). This means that when all factors are jointly increased, CO2 emissions have a moderate decrease. In addition, some GCC countries present a different pattern compared to the average pattern of MENA countries. Finally, radar plots indicate that, overall, RS pattern over factors is moderately heterogeneous within GCC countries, with larger variability appearing in the response to urban population and GDP.  相似文献   

6.
The greenhouse gases subject to emission reduction commitments under the UN Climate Convention include the fluorinated compounds sulphur hexafluoride (SF6), perfluorocarbons (PFCs) and hydrofluorocarbons (HFCs). The present study projects the emissions of these gases in Germany over the 1995–2010 period, with and without additional emission abatement efforts In the business-as-usual scenario, total emissions of the three fluorinated gases rise over the 1995–2010 period from 11,1 to 27.4 million tonnes CO2 equivalent. This rise is attributable to 72% to HFCs, used above all for refrigeration and stationary air-conditioning, for mobile air-conditioning, for blowing extruded polystyrene (XPS) foam and for one-component polyurethane (PU) foam. Soundproof glazing is the largest SF6 emission sector. Most PFC emissions come from semiconductor manufacturing and aluminium smelting. The reduction scenario does not achieve a stabilisation of fluorinated gas emissions either. The rate of growth is only slowed, with 11.1 million tonnes CO2 equivalent in 1995 growing to 14.9 million in 2010. The measures proposed to attenuate emissions growth are: mandatory equipment maintenance in refrigeration and stationary air-conditioning, refrigerant substitution of HFCs by CO2 in mobile air-conditioning, partial HFC substitution by CO2 in XPS foam blowing, 95% HFC substitution by flammable hydrocarbons in one-component PU foam. Complete SF6 phase-out is considered to be feasible in soundproof glazing. The PFC emissions of the semiconductor industry can be cut by 85% by new chamber cleaning technologies.  相似文献   

7.
Energy is one of the most important elements required for poverty alleviation and socioeconomic development, and it has a particularly strong impact on households in rural areas. An extensive survey on household energy consumption patterns that interrelates socioeconomic and demographic factors was conducted in the disregarded villages of Lijiang City by using the stratified random sampling technique for 120 households. This study focuses on household energy consumption and the related carbon dioxide (CO2) emissions in the study area. Firewood, biogas, and electricity were identified as the main energy sources of the rural households. This study demonstrates that 100% of the households use firewood, 52% use biogas, and 95% use electricity as fuel types. On average, each household consumed 1752 kg of firewood, 280 m3 of biogas, and 392 kWh of electricity annually. All households generated an annual average amount of CO2 emissions of 3851 kg, of which 85.08% come from firewood, 7.66% from biogas, and 7.26% from electricity. Family size, income, and educational level were found to be the major factors that influence CO2 emissions. The results of this study may be useful in explaining the energy consumption characteristics in the rural areas of Lijiang City and are expected to be useful in policy formulation for energy consumption and environmental protection.  相似文献   

8.
在对云南省钢铁行业现状分析的基础上,通过现场调研的方式,以2009年为基准年,收集其4季度生产年平均数据,采用实测法与物料衡算相结合的方法,核算得出云南省钢铁冶炼行业烧结工序综合排放系数为2.24-3.29kg-SO2/t烧结矿;球团工序综合排放系数为0.30~0.34kg—SO2/t球团矿;高炉工序综合排放系数为0.31~0.90kg—SO2/t铁水。通过各工序产排污系数,得出云南省钢铁行业SO2综合产排污系数为3.51-4.85kg—SO2/t粗钢。在系数核算的基础上,将本研究核算所得系数与第一次全国污染源普查系数、总量减排核算系数(16kg—SO2/t粗钢)进行比较,认为云南省铁矿石含硫量低(0.1%)是导致产排污系数偏低的主要原因。  相似文献   

9.
This study, with FAOSTAT and Taiwan data sources, estimates Taiwan carbon dioxide (CO2) emissions in harvested wood products (HWP) by applying the three accounting methods suggested by the 2006 IPCC Guidelines. The investigation also explores impulse responses of CO2 emissions to economic factors. Results from FAOSTAT and Taiwan data demonstrate an inconsistent production approach (PA) in the signs of the estimated CO2 emissions. Average contributions of HWP from 1990 to 2008 for the stock change approach (SCA), PA and atmospheric flow approach (AFA) in Taiwan are ?3.195 Tg, 0.412 Tg and 10.632 Tg CO2 emissions, respectively. SCA has determined the Taiwan HWP as a carbon reservoir; in contrast, PA and AFA have determined Taiwan HWP as a CO2 emission. The net forest products imports into Taiwan induce the inconsistent signs of HWP carbon sequestration among SCA, PA and AFA. The vector autoregressive model (VAR) results also indicate that real GDP per capita is crucial for SCA CO2 emissions, followed by exchange rate.  相似文献   

10.
One central aspect of the environmental management system for universities developed in Osnabrück is the environmental audit of universities as realized by an ecobalance. This article deals with modelling of the material and energy flows caused by the energy supply of the University in Osnabrück using the software Umberto®. The result is the university’s energy balance. 37% of the primary energy gets lost in the pre-processes of energy production, mainly during electricity generation. The final energy consumption of the university can be split into 37% electricity and 63% heat, whereas the relation of CO2 emissions is almost the opposite. Related to this area, the electricity consumption in the different buildings is partially above that seen in similar university buildings in Germany, but below that of all the other values observed for universities located in Lower Saxony. Both the electricity and heat consumption, and therefore also the climate-damaging emissions of CO2, have increased over the past years. Without further measures the university will not be able to achieve the CO2-reduction target of the federal government. Recommended are the increased use of district heating power stations to produce the university’s own electricity with lower emissions and energy saving measures, especially in the field of electricity which is responsible for high CO2-emissions.  相似文献   

11.
● Haze formation in China is highly correlated with iron and steel industry. ● VOCs generated in sinter process were neglected under current emission standard. ● Co-elimination removal of sinter flue gas complex pollutants are timely needed. Recent years have witnessed significant improvement in China’s air quality. Strict environmental protection measures have led to significant decreases in sulfur dioxide (SO2), nitrogen oxides (NOx), and particulate matter (PM) emissions since 2013. But there is no denying that the air quality in 135 cities is inferior to reaching the Ambient Air Quality Standards (GB 30952012) in 2020. In terms of temporal, geographic, and historical aspects, we have analyzed the potential connections between China’s air quality and the iron and steel industry. The non-target volatile organic compounds (VOCs) emissions from iron and steel industry, especially from the iron ore sinter process, may be an underappreciated index imposing a negative effect on the surrounding areas of China. Therefore, we appeal the authorities to pay more attention on VOCs emission from the iron and steel industry and establish new environmental standards. And different iron steel flue gas pollutants will be eliminated concurrently with the promotion and application of new technology.  相似文献   

12.
The most important question raised from issues of environmental degradation is how economic activities bring about changes that will result in pollution. In the pursuit of tourism economy, contrary to popular interest, the travel and tourism (T&T) industry may cause environmental damages through the emissions of carbon dioxide (CO2) from energy consumption in areas such as transportation and delivery of amenities. Given this major concern, this paper attempts to investigate the linkage between tourism and CO2 emissions in Malaysia between 1981 and 2011. In particular, this study fills the knowledge gap by taking a closer look at the impact of international tourist arrivals on CO2 emissions by sector – electricity and heat generation and transport. Results from the bound test method suggest that there exists a long-run relationship among the variables under consideration when CO2 emissions become the dependent variable. The original result is similarly robust to alternatives, which are CO2 emissions from sectors of electricity and heat generation and transport. Furthermore, the vector error correction model causality analysis indicates a causal relationship between tourism and CO2 emissions by transport and electricity and heat generation. Subsequently, several tourism-related policies are drawn from these findings.  相似文献   

13.
Improving eco-efficiency is propitious for saving resources and reducing emissions, and has become a popular route to sustainable development. We define two energy-related eco-efficiencies: energy efficiency (ENE) and greenhouse gas (GHG) emission-related eco-efficiency (GEE) using energy consumption and the associated GHG emissions as the environmental impacts. Using statistical data, we analyze China??s energy consumption and GHG emissions by industrial subsystem and sector, and estimate the ENE and GEE values for China in 2007 as 4.871×107 US$/PJ and 4.26×108 US$/TgCO2eq, respectively. Industry is the primary contributing subsystem of China??s economy, contributing 45.2% to the total economic production, using 79.6% of the energy consumed, and generating 91.4% of the total GHG emissions. We distinguish the individual contributions of the 39 industrial sectors to the national economy, overall energy consumption, and GHG emissions, and estimate their energyrelated eco-efficiencies. The results show that although ferrous metal production contributes only 3.5% to the national industrial economy, it consumes the most industrial energy (20% of total), contributes 16% to the total industrial global warming potential (GWP), and ranks third in GHG emissions. The power and heat sector ranks first in GHG emissions and contributes one-third of the total industrial GWP, although it only consumes about 8% of total industrial energy and, like ferrous metal production, contributes 3.5% to the national economy. The ENE of the ferrous metal and power and heat sectors are only 8 and 2.1×107 US$/PJ, while the GEE for these two sectors are 9 and 4×104 US$/GgCO2eq, respectively; these are nearly the lowest ENE and GEE values among all 39 industry sectors. Finally, we discuss the possibility of ecoefficiency improvement through a comparison with other countries.  相似文献   

14.
Treibhausgas-Emissionen zukünftiger Erdgas-Bereitstellung für Deutschland   总被引:1,自引:1,他引:0  

Background

Natural gas makes a significant contribution to the current energy supply and its importance, in relation to both the German and worldwide energy supplies, will increase further in decades to come. In addition to its high degree of efficiency, the low level of direct GHG combustion emissions is also an advantageous factor. However, around 90% of natural gas is methane (CH4), which is the second most significant GHG due to its high greenhouse potential (21 times higher than CO2). Therefore, high levels of direct gas losses of natural gas in its production, processing, transport and distribution could neutralise its low emission advantages. This is particularly apparent when considering the growing distances between production and use, the demanding production processes and the upcoming worldwide market for LNG (liquefied natural gas).

Aim

This paper aims to analyse and illustrate the future GHG emissions of the whole process chain of natural gas (indirect emissions) to be supplied to the German border over the next 2 decades. This should allow the comparison of total GHG emissions (indirect and direct) of natural gas with the GHG emissions of other fossil fuels. By considering likely changes in gas origin as well as dynamic changes in the infrastructure and technology of gas production, processing and transport until 2030, all relevant factors are included. The study focuses on the emissions of Russian natural gas as Russia is already, and will be in the future, the most important gas supplier to the German and European gas markets.

Results and Discussion

The analysis illustrates a significant change in the gas supply over the next two decades. The EU Gas Fields are in decline and it is predicted that these will run dry. In parallel the share of Russian and Norwegian natural gas, and also the levels of LNG production (e.g. from Algeria or Egypt), will increase. Although the potential for GHG emissions tends to grow as a result of greater transport distances and demanding production and processing activities, high investment in necessary mitigation options (e.g. through replacing older and inefficient technology; updating to state-of-the-art technology) may neutralise the increase. The overall result of these counteracting trends will be to decrease GHG emissions, in a range of around 12% per TJ of direct emissions of natural gas, depending on the level of investment in the modernisation of the Russian gas infrastructure and the improvements of the LNG process. In the two given scenarios the indirect emissions of the natural gas used in Germany will decrease from about 23 million t CO2-eq (2005) to 19.5 or 17.6 million t CO2-eq in the year 2030. In spite of a significant higher gas consumption the emissions are reduced in the first scenario due to technical modifications. In the second scenario the emission reduction is based on the lower gas consumption.

Conclusions

At present, the indirect GHG emissions of the natural gas process chain are comparable to the indirect emissions produced by oil and coal. The emission trend of the natural gas process chain will markedly decrease if the mitigation options are followed consistently. However, in order to ensure the long-term security of natural gas supply for future decades, a high level of investment is essential. With regard to future emissions, the best available technology and, therefore, that which is most economically feasible in the long term, should be used. Under these conditions natural gas — as the fossil fuel with the lowest levels of GHG emissions — can play a major role in the transition to a renewable energy supply for the future.  相似文献   

15.
Agricultural soils are an important source of greenhouse gases (GHG). Biochar application to such soils has the potential of mitigating global anthropogenic GHG emissions. Under irrigation, the topsoils in arid regions experience repeated drying and wetting during the crop growing season. Biochar incorporation into these soils would change the soil microbial environment and hence affect GHG emissions. Little information, however, is available regarding the effect of biochar addition on carbon dioxide (CO2) and nitrous oxide (N2O) emissions from agricultural soils undergoing repeated drying and wetting. Here, we report the results of a 49-day aerobic incubation experiment, incorporating biochar into an anthropogenic alluvial soil in an arid region of Xinjiang Province, China, and measuring CO2 and N2O emissions. Under both drying–wetting and constantly moist conditions, biochar amendment significantly increased cumulative CO2 emission. At the same time, there was a significant reduction (up to ~20 %) in cumulative N2O emission, indicating that the addition of biochar to irrigated agricultural soils may effectively slow down global warming in arid regions of China.  相似文献   

16.
Meeting environmental, economic, and societal targets in energy policy is complex and requires a multicriteria assessment framework capable of exploring trade-offs among alternative energy options. In this study, we integrated economic analysis and biophysical accounting methods to investigate the performance of electricity production in Finland at plant and national level. Economic and environmental costs of electricity generation technologies were assessed by evaluating economic features (direct monetary production cost), direct and indirect use of fossil fuels (GER cost), environmental impact (CO2 emissions), and global environmental support (emergy cost). Three scenarios for Finland's energy future in 2025 and 2050 were also drawn and compared with the reference year 2008. Accounting for an emission permit of 25 €/t CO2, the production costs calculated for CHP, gas, coal, and peat power plants resulted in 42, 67, 68, and 74 €/MWh, respectively. For wind and nuclear power a production cost of 63 and 35 €/MWh were calculated. The sensitivity analysis confirmed wind power's competitiveness when the price of emission permits overcomes 20 €/t CO2. Hydro, wind, and nuclear power were characterized by a minor dependence on fossil fuels, showing a GER cost of 0.04, 0.13, and 0.26 J/Je, and a value of direct and indirect CO2 emissions of 0.01, 0.04, and 0.07 t CO2/MWh. Instead, peat, coal, gas, and CHP plants showed a GER cost of 4.18, 4.00, 2.78, and 2.33 J/Je. At national level, a major economic and environmental load was given by CHP and nuclear power while hydro power showed a minor load in spite of its large production. The scenario analysis raised technological and environmental concerns due to the massive increase of nuclear power and wood biomass exploitation. In conclusion, we addressed the need to further develop an energy policy for Finland's energy future based on a diversified energy mix oriented to the sustainable exploitation of local, renewable, and environmentally friendly energy sources.  相似文献   

17.
运用LMDI方法将中国SO2排放变化分解为规模效应、区域经济结构效应、能源强度效应、能源结构效应、产污系数效应和污染治理效应六个因素,并进行了东、中、西和东北四个地区的差异分解分析。结果表明:规模效应是造成各地区SO2排放增加的最重要原因,不同地区不同时段SO2排放的减排因素不同。1999―2003年间,东部、中部地区能源结构和产污系数的减排效应显著,西部、东北地区能源强度和产污系数效应突出;2003―2006年间,东中西部污染治理和产污系数减排效应明显,东北地区能源效率减排贡献大;2006―2009年间,东部、中部的污染治理和能源效率减排贡献突出,西部的产污系数效应和污染治理作用显著,东北的产污系数和能源强度效应突出。建议按照不同地区结合实际情况实行灵活的减排政策。  相似文献   

18.
Reducing greenhouse gas emissions without hampering economic growth is a significant issue for China. Taking into account environmental sustainability principles, this study analysed the energy efficiency of 30 regions of China for the period 2002–2007. By employing a data envelopment analysis (DEA) approach, this study included undesirable CO2 and SO2 outputs and the desirable GDP output in the model. Empirical outcomes demonstrated that the overall average technical efficiency (TE) of China is 0.843, indicating a 15.70% input inefficiency. Among three geographic areas, the east has the highest technical efficiency, with the highest ability to set up clean-burning power plants based on best technology available. Performance in the west is less good because of much inefficient technology. Finally, the study demonstrates detailed management implications of the BCG matrix. The most important contribution of this paper is a detailed demonstration of an energy performance evaluation mechanism for China. The valuable results and insights gained can be equally effectively applied to studies in other developing countries facing the same gaseous emissions.  相似文献   

19.
Motorized traffic is among the biggest CO2-emitting sources and is additionally dominating NOx emission. Engine technology shifts are approaching, while automobiles developed in Germany and Europe are exported worldwide together with the European emission thresholds for cars. The Diesel car boom induced by EU commission, national EU governments and car industry is accordingly analyzed for sustainability and its effects on environment. German CO2 emission reduction numbers by motorized traffic, as claimed by the government, are questioned. Radiative forcing by soot (black carbon) Diesel car emissions is added on the CO2 emissions by fuel combustion. Diesel cars without particle filters are found to cause an atmospheric warming. Modelled and measured NOx emission data are assessed to mismatch considerably. In spite of an ambitious national NOx reduction plan there is excess NOx emission by the German and European Diesel car boom. In this context environmental sustainability of battery electric vehicles (BEV) is investigated. Direct (by car) und indirect (by power plant) emissions (CO2, NOx, PM10, SO2) of cars with internal combustion engines (ICE) and BEVs, respectively, are calculated and compared. CO2-ecoanalysis revealed advantages for BEVs even operated with current German electricity mix based on around 15?% renewable sources.  相似文献   

20.
The climatically-relevant emission of CO2 which results from motor vehicle traffic offers a challenge for the automobile industry to produce highly efficient and economical motor vehicles. Furthermore, the production of fuels from regenerative energies may provide a more significant contribution over the long-term to make our mobility more compatible to the climate and to reduce our dependence on crude oil importation. Substantial reductions in emissions can be achieved through the application of regenerative fuels, especially in combination with more energy-efficient hybrid or fuel-cell vehicles, or through the addition of biogenic components to conventional fuels. Coordinated efforts between the automobile industry, the energy industries and the responsible politicians are mandatory in order to achieve ecologically-tolerable motor vehicle traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号