首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
UV/Fenton法预处理N-甲基苯胺生产废水   总被引:5,自引:1,他引:4  
采用UV/Fenton法对N-甲基苯胺生产废水进行预处理。当原水COD约为3 400 mg/L时,在适宜操作条件(H2O2投加量为50 mL/L,Fe2+投加量为1.209 g/L,pH=5.0,反应时间为30 min)下的COD去除率可达90%以上。同时得到Fenton试剂处理该废水的适宜条件为:H2O2投加量为60 mL/L,Fe2+投加量为1.692 g/L,pH为5.0,反应时间30 min;单独UV辐照处理该废水的较适宜条件为:反应时间为20 min, pH=5.0。最后就3种处理方法进行了比较,发现UV对Fenton试剂处理N-甲基苯胺生产废水具有一定促进作用。反应前后的紫外光谱说明,经UV/Fenton反应后,原水中的含苯环物质已得到了彻底的氧化分解。  相似文献   

2.
Fenton试剂催化氧化嘧啶废水的特性   总被引:4,自引:2,他引:2  
研究了Fenton催化氧化法对废水中嘧啶的去除效能,优化了处理体系中的反应条件,分析了各影响因子的作用机理;并用一元线性回归方程对不同温度下,嘧啶相对残余浓度对反应时间的相关性进行了定量分析。结果表明:温度为25℃,pH为3.5,Fe2+的投加量64 mmol/L,H2O2投加量为300 mmol/L时,反应2 h,Fenton试剂对嘧啶和COD的去除率分别达90%和50%以上;同时发现Fenton试剂对嘧啶的氧化降解具有相对优先性,且符合一级反应动力学模式,并计算表观反应速率常数和活化能。  相似文献   

3.
氨吹脱-Fenton氧化预处理阿奇霉素废水的研究   总被引:1,自引:1,他引:0  
采用氨吹脱-Fenton试剂氧化法对阿奇霉素废水进行预处理,考察了各种因素对处理效果的影响。实验结果表明:在pH值为11,吹脱时间160 min,温度30℃的条件下,氨氮浓度从2 458.7 mg/L降低到421.7 mg/L,去除率可达82.85%;Fenton氧化吹脱出水的适宜工艺条件:初始pH值为3、反应时间90 min、FeSO4·7H2O投加量为0.01 mol/L、H2O2/Fe2+的投加比16∶1,此时,COD去除率为72.6%;废水经预处理后,有效地改善了废水水质,提高了废水的可生化性,由初始的0.1增至0.37,为后续废水的生化处理提供了有利条件。  相似文献   

4.
UV-Fenton光催化氧化处理高浓度邻苯二甲酸二辛酯生产废水   总被引:4,自引:1,他引:4  
采用UV-Fenton技术光催化氧化高浓度邻苯二甲酸二辛酯(DOP)生产废水,确定最佳操作条件为:初始pH=3.8,H2O2浓度为9.99 g/L,H2O2/Fe2+摩尔比为20∶1,光照反应60 min。此条件下的废水COD去除率为89.1%,出水COD值在570 mg/L左右。经正交试验确定影响处理效果各因素的重要性顺序为:H2O2浓度>H2O2/Fe2+摩尔比>光照反应时间>pH。UV的加入与单独的Fenton体系存在正相关的协同作用。废水降解的表观过程符合一级反应动力学模式。  相似文献   

5.
研究了微曝气Fenton氧化法关键工艺参数对模拟双酚A(BPA)废水处理效果的影响,并从活性污泥性质和污染物去除率两方面,采用膜生物反应器(membrane bioreactor, MBR)对微曝气Fenton氧化法的处理效果进行了实验验证,为实现BPA废水的生物处理奠定基础。结果表明,初始pH值、反应时间、H2O2/COD(质量浓度比)、H2O2/Fe2+ (摩尔浓度比)、反应温度及曝气量均对预处理效果有较大影响,在最佳条件下,COD去除率可达70%,BOD/COD值则由原废水的0.02提高到0.50以上。MBR处理上述出水的结果表明,经微曝气Fenton氧化处理BPA的废水,可较好地适应后续的生化处理。  相似文献   

6.
用H2O2/Fe3+处理高浓度含甲醛废水的研究   总被引:1,自引:0,他引:1  
研究采用H2O2/Fe3+催化氧化处理高浓度含甲醛废水,探讨了双氧水和催化剂投加量、反应pH及反应温度等操作条件对处理效果的影响,并通过酸溶解回用失活催化剂。结果表明,较优的操作条件为:H2O2/COD(质量比)=2.2~2.6,Fe3+/H2O2(摩尔比)=0.048~0.058,反应pH 1.80~2.68,反应温度50℃,反应时间40 min;在上述操作条件下,甲醛去除率达到99%以上,COD去除率达到85%以上。失活的催化剂可通过稀酸溶解后循环使用,其效果与三价铁盐作催化剂的基本相同。采用H2O2/Fe3+处理含甲醛废水具有比采用H2O2/Fe3+较优的效果。  相似文献   

7.
不同高级氧化法对水中低浓度药物甲硝唑降解过程的比较   总被引:3,自引:0,他引:3  
采用UV、H2O2、UV/H2O2、Fenton、UV/Fenton和UV/TiO2方法,对水中低浓度的药物甲硝唑进行降解。通过HPLC和UV-Vis光谱得到的甲硝唑去除率。详细讨论了Fe2+、TiO2和H2O2的初始浓度以及溶液的初始pH值对降解效率的影响。结果表明,UV/Fenton和UV/TiO2 2种系统对水中低浓度甲硝唑均有很好的去除效果,但前者的光催化效率更高。在甲硝唑浓度=6 μmol/L,H2O2和Fe2+的初始浓度分别为0.5 mg/L和2.94 μmol/L,pH=4的条件下,UV/Fenton方法对甲硝唑水溶液光催化的最佳效率为95.8%。  相似文献   

8.
类Fenton氧化技术去除榨菜生产废水COD的研究   总被引:1,自引:0,他引:1  
研究了紫外光照射下类Fenton试剂对榨菜生产废水COD的去除,考察了光照时间、初始pH值、过氧化氢用量、FeCl3·6H2O用量等因素对榨菜废水中COD去除率的影响。结果表明,光照时间60 min,初始pH值3,H2O2(30%)的用量为理论值的120%,c0(H2O2)∶c0[Fe(Ⅲ)]=11.6∶1.0时,COD去除率效果为最佳,达到79%。当H2O2投加总量不变时,去除率随着投加次数的增多而增大。  相似文献   

9.
Fenton氧化破解污水处理厂污泥   总被引:2,自引:0,他引:2  
研究了Fenton氧化反应的影响因素pH值、H2O2/Fe2+投加比、反应温度和反应时间对污泥破解效果的影响,并以污泥上清液中蛋白质、糖类、SCOD及污泥TSS、VSS的变化来表征污泥破解的程度。结果表明,最佳破解条件为:pH=5,最佳H2O2/Fe2+投加比为24:1,反应温度为70℃,反应时间为90 min,在该条件下,SCOD、溶解性蛋白质和多糖分别由88.76、19.70和14.95 mg/L增加到3 714.64、2 039.90和289.70 mg/L;TSS及VSS分别由34.60 g/L、19.76 g/L降为26.60 g/L、14.22 g/L,去除率分别为23.12%和 28.14%。Fenton氧化破解污泥,能够有效促进污泥絮体分解,有利于进行后续的厌氧消化处理。  相似文献   

10.
O3、H2O2/O3及UV/O3在焦化废水深度处理中的应用   总被引:1,自引:1,他引:0  
采用O3、H2O2/O3和UV/O3等高级氧化技术(AOPs)对某焦化公司的生化出水进行深度处理,考察了O3与废水的接触时间、溶液pH、反应温度等因素对废水COD去除率的影响,确定出O3氧化反应的最佳工艺参数为:接触时间40 min,溶液pH 8.5,反应温度25℃,此条件下废水COD及UV254的去除率最高可达47.14%和73.47%;H2O2/O3及UV/O3两种组合工艺对焦化废水COD及UV254的去除率均有一定程度的提高,但H2O2/O3系统的运行效果取决于H2O2的投加量。研究结论表明,单纯采用COD作为评价指标,并不能准确反映出O3系列AOPs对焦化废水中有机污染物的降解作用。  相似文献   

11.
研究了Fe/C微电解和Fenton氧化处理印刷电路板废水的最佳条件和联合工艺的处理效果。结果表明,Fe/C微电解最佳工艺条件为:pH=2,Fe/C质量比为2∶1,投加药剂量为30 g/L,停留时间为30 min;Fenton氧化最佳工艺条件为:pH=3,H2O2投加量为6 mL/L,停留时间为2 h。将2种方法联用并进行中试实验,结果表明,对原水的COD去除率可达80%,而且Fenton反应可利用微电解产生的Fe2+,节约成本,运行稳定,效果良好。  相似文献   

12.
加热酸化-Fenton氧化处理乳化液废水   总被引:1,自引:0,他引:1  
采用加热酸化-Fenton氧化处理乳化液废水,在加酸量为1.0mL98%H2SO4/100mL乳化液、加热温度95℃、加热时间1h条件下,初始COD〉20万mg/L,浊度〉8000NTU的乳化液COD降低到46592mg/L,浊度降低到20NTU,加热和酸化的联合过程达到了良好的破乳效果;破乳后的出水在ρ(Fe2+)/ρ(H2O2)=1:30、ρ(H2O2)和(COD)=1.4、pH=4的条件下进行Fenton氧化,处理后的出水COD可降到18600mg/L,去除率达61.4%,其B/C可由破乳后的0.11提高到0.43,废水的可生化性大大提高,为后续处理创造了可能。  相似文献   

13.
铁炭微电解/Fenton试剂预处理土霉素废水的研究   总被引:10,自引:3,他引:7  
研究了铁炭微电解/Fenton试剂法工艺对高浓度难生化处理的土霉素废水预处理效果.结果表明,当原水COD在6 000 mg/L、pH值为2.2时,铁炭微电解反应时间为80 min,铁炭微电解对原水COD的去除率>40%;铁炭微电解出水再投加220 mg/L的H2O2(30%)进行Fenton试剂法处理,常温下反应50 min对原水COD的去除率可提高到75%以上.铁炭微电解 Fenton试剂联合工艺的处理效果好、运行稳定、成本低廉,适宜对难降解的土霉素废水的预处理.  相似文献   

14.
絮凝-Fenton试剂氧化处理印染废水   总被引:1,自引:0,他引:1  
采用Fenton试剂对某染袜厂2种印染废水(印染红和印染蓝)进行处理。考察了硫酸亚铁投加量、双氧水投加量、反应时间及pH值对印染废水的色度及COD去除率的影响,通过正交实验确定了Fenton试剂处理该废水的最佳操作条件为:反应时间30 min、双氧水(30%)投加量4 mL/L、硫酸亚铁投加量300 mg/L、pH值为4左右。在最佳条件下,印染蓝废水经氧化处理后COD去除率大于80%,色度去除率95%以上;印染红废水需经絮凝预处理后再用Fenton试剂氧化处理,其脱色率达到了99.6%,COD去除率为91.2%,出水COD浓度为96 mg/L,可达标排放。  相似文献   

15.
UV-Fenton体系预处理四氢呋喃废水实验研究   总被引:1,自引:0,他引:1  
采用UV-Fenton体系预处理四氢呋喃废水,实验结果表明,pH值、反应时间、Fe2+和H2O2投加量等因素对处理效果有较大的影响。实验确定的最佳反应条件为:原水pH=5,Fe2+投加量2.5 mmol/L,H2O2投加量12 mmol/L,反应时间90 min,连续曝气,在此条件下,COD去除率可达85%左右。经UV-Fenton体系处理后,废水的B/C值由0.16增至0.47,可生化性提高,可满足后续生化处理的要求。  相似文献   

16.
以旋转填充床(RPB)作为反应装置,研究了Fenton工艺与Fenton+O3工艺处理模拟阿莫西林废水的效果,考察了FeSO4·7H2O的投加量、温度、旋转床转速、液体流量及pH对C0D去除率的影响。实验表明,Fenton+O3工艺的COD脱除率及BOD5/COD相对于Fenton工艺分别提升26.7%和140%。该工艺在pH为3、温度为25℃、液体流量30L/h、气体流量2.5L/h、转速800r/min、H2O2的投加量为1mmol/L及Fe2+投加量为0.4mm01/L的条件下,100mg/L的模拟阿莫西林废水中COD的去除率达到57.9%,BOD5/COD从0增加到0.36,满足后续生化处理要求。  相似文献   

17.
Fenton氧化法深度处理甲醛废水   总被引:1,自引:0,他引:1  
采用Fenton氧化法深度处理经生化降解后的甲醛废水,结果表明,Fenton氧化法深度处理甲醛废水是可行的,在合适的反应条件下,降解初始COD为150 mg/L左右的甲醛废水,COD去除率达30%以上;Fe2+与H2O2的投加比例、投加量及投加方式、反应温度、pH、反应时间对处理效果都有不同程度的影响。  相似文献   

18.
微电解-Fenton联合工艺预处理煤层气井压裂废水   总被引:1,自引:0,他引:1  
利用Fenton强化微电解工艺对煤层气井压裂废水展开预处理研究,以COD去除率和可生化性(B/C)为考察指标,单独工艺正交实验结果表明pH为3、反应时间为90 min、铁碳体积比为1.5∶1和pH为4、反应时间为80 min、H2O2投加量为4 mL/L分别是微电解与Fenton反应的最优条件,各可获得48.1%和44.9%的COD去除率。在最优条件下进行微电解-Fenton联合运行实验,连续61 h内COD去除率均稳定在65%以上,B/C由0.158上升到0.3以上,有利于后续生化处理的运行。  相似文献   

19.
Fenton氧化与铁炭微电解组合预处理DMF废水   总被引:1,自引:0,他引:1  
对COD表征模拟废水中DMF去除率的可行性进行了探讨。在此基础上,分别对铁炭微电解、Fenton氧化-铁炭微电解和铁炭微电解-Fenton氧化组合工艺对DMF废水的处理效果进行分析,结果表明,Fenton氧化-铁炭微电解工艺的处理效果较好。在pH=5,反应时间为1 h,FeSO4·7H2O投加量为1 000 mg/L、H2O2投加量为2.67 mL/L和不曝气的最佳反应条件下,Fenton氧化-铁炭微电解工艺对实际废水和废液中COD的去除率分别达到66.67%和72.22%,从而验证了该工艺处理DMF废水的可行性。此外,Fenton氧化处理DMF废水过程实际上是将酰胺基团和羰基的不饱和双键氧化分解的过程。  相似文献   

20.
通过Fenton法和结合聚合硫酸铁的混凝作用,实现垃圾渗滤液氧化塘出水COD的深度处理;并利用水泥水化产物的凝胶物质,强化COD去除率。30%H2O2投加量为0.75mL/L、七水硫酸亚铁投加量为1.5g/L、n(H2O2):n(Fe^2+)=1.2:1(摩尔比)时,Fenton法对渗滤液COD的去除率可达52%;水灰比为2:1、搅拌24h的水泥水化物将Fenton法的出水pH值从4调至10,该工艺流程总的COD去除率为73.6%,较普通的Ca(OH)2调节法提高9.3%,出水COD可以从进水的1200mg/L降至315mg/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号