首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
一种新型纳米固相萃取吸附剂,由阴离子表面活性剂十二烷基磺酸钠(SDS)包裹在Fe3O4磁性纳米颗粒表面形成,用于吸附水溶液中的重金属离子。研究了吸附过程的主要影响因素(如SDS浓度、溶液pH等)以及解吸过程的最佳条件,并对其机理进行了初步的探讨。研究结果表明,共沉淀法制备的Fe3O4颗粒粒径分布均匀,平均粒径约为54 nm;SDS浓度为300 mg/L时,Fe3O4/SDS磁性纳米颗粒吸附Cd2+和Zn2+的能力最强;在一定浓度范围内,Fe3O4/SDS体系对Cd2+和Zn2+的吸附平衡数据符合Langmuir吸附等温方程,饱和吸附量分别为22.42 mg/g和13.95 mg/g。最终结果表明,Fe3O4/SDS磁性纳米颗粒具有较强磁分离能力和较好的吸附效果。  相似文献   

2.
采用溶剂热法成功制备了具有新型形貌的Fe3O4/CS单分散磁性纳米绒球。选取Fe3O4/CS纳米绒球作为磁性吸附剂,研究了其脱除水中五氯酚钠(PCP-Na)的吸附性能。吸附平衡实验表明,Fe3O4/CS吸附脱除PCP-Na的吸附过程能在30 min以内迅速实现吸附平衡,且对于初始浓度为100 mg/L、初始pH为6.5的PCP-Na溶液,在25℃吸附条件下能使溶液中的PCP-Na去除率高达91.5%。吸附等温线和吸附动力学研究表明,Fe3O4/CS吸附脱除PCP-Na的吸附过程属于放热反应,遵循Langmuir吸附模型,符合Lagergren二级动力学方程。此外,在完成吸附过程后,通过一块永久磁铁即能从吸附溶剂中迅速分离出Fe3O4/CS,从而实现吸附剂的有效分离和重复利用,显示了该磁性吸附剂的优越性和用于实际废水处理的潜力。  相似文献   

3.
采用静态吸附法以4A沸石为吸附剂研究其对复合污染水体中Pb2+、Cu2+和Cd2+的竞争吸附特性,并探讨了影响吸附的环境因素。实验表明,在室温条件下,溶液pH5~6,4A沸石15 mg对10 mL复合污染溶液(Pb2+、Cu2+和Cd2+浓度分别为100 mg/L)吸附20 min时,对溶液中3种重金属的吸附去除率均可达99.8%以上。反应过程中4A沸石对3种重金属的吸附速率大小为Pb2+>Cu2+>Cd2+。复合污染水体中4A沸石对Pb2+、Cu2+和Cd2+的吸附符合Langmuir和Fre-undlich等温吸附方程,相关系数分别为0.9981、0.9901、0.9916和0.9638、0.9194、0.9689。经计算,4A沸石对Pb2+、Cu2+和Cd2+的饱和吸附量分别为129.9 mg/g、107.5 mg/g和99.0 mg/g。4A沸石吸附重金属离子达到吸附平衡的时间较短,对溶液pH值的适应性较好。吸附后的4A沸石可以再生利用,对铅离子洗脱重复利用性较铜离子和镉离子强。  相似文献   

4.
Fe3O4纳米磁性微粒对全氟辛烷磺酸盐的吸附   总被引:1,自引:2,他引:1  
采用共沉淀法合成Fe3O4纳米磁性颗粒,用透射电子显微镜(TEM)、X射线衍射仪(XRD)以及振动样品磁强计(VSM)对Fe3O4纳米磁性颗粒的粒径、形貌和磁性进行表征并研究Fe3O4纳米磁性微粒对全氟辛磺酸盐的吸附。结果表明:在PFOS初始浓度4 mg/L,pH为3,反应时间24 h,Fe3O4纳米磁性微粒投加量1.25 g/L,对全氟辛磺酸盐去除率达到90%。Fe3O4纳米磁性微粒对PFOS的吸附符合Freundlich吸附方程。  相似文献   

5.
液/固体系中硅藻土对Pb2+和Cd2+的吸附机制   总被引:2,自引:0,他引:2  
为了提高硅藻土在重金属废水处理上的应用水平,采用静态吸附实验考察了液/固体系中硅藻土对Pb2+、Cd2+的吸附影响因素、吸附等温线和吸附动力学属性。结果表明,随着投加量的减少,离子初始浓度的提高,pH值的增大,吸附作用时间的延长,硅藻土对Pb2+、Cd2+吸附量不断上升;硅藻土对Pb2+、Cd2+的等温吸附都符合Langmuir模型,硅藻土对Pb2+、Cd2+最大吸附量分别为10.428 mg/g和7.916 mg/g,硅藻土对Pb2+具有更好的吸附能力;Pb2+具有较低的水合自由能,更容易脱去水膜与硅藻土孔道内的活性基团发生吸附作用;双常数扩散方程可以很好地描述硅藻土对Pb2+、Cd2+的吸附动力学属性,硅藻土对Cd2+有较快的吸附速率。  相似文献   

6.
用共沉淀法将ZrOCl2·8H2O包裹在磁性纳米Fe3O4表面,合成了一种针对高浓度含砷含氟废水的高效新型磁性纳米吸附剂Fe3O4·ZrO(OH)2.研究考察了吸附剂对氟和砷的吸附容量、反应平衡时间以及pH对吸附效果的影响.实验表明,磁性纳米Fe3O4·ZrO(OH)2吸附剂对水中F-和As(Ⅲ/Ⅴ)等温吸附模型符合Langmuir和Freundlich模型.对溶液中总氟和总砷的吸附容量分别可达70.42 mg/g和133.33 mg/g.通过拟二级动力学方程可得知吸附过程在20 min左右即可达到平衡.随着pH的不断增加,吸附剂对氟的吸附容量逐渐降低,而对砷的吸附量则是先增加后减少.  相似文献   

7.
以Pb2+吸附量为评价指标获得了PEI-DTC的最佳制备条件,采用SEM和FT-IR对所制备材料的形貌和结构进行了表征,考察了吸附时间、pH、振荡速度和材料投量对PEI-DTC吸附Pb2+、Cu2+、Zn2+效果的影响,分析了吸附过程中的动力学特征、热力学特征,研究了材料的复用性能。结果表明,采用30% PEI溶液制备PEI-DTC的最佳条件为m(PEI)/m(戊二醛)= 2:1、m(PEI)/m(硼氢化钠)=3:1、m(PEI)/m(二硫化碳)=3:1;所制备材料表面呈颗粒状和蜂窝状结构,比表面积较大;PEI-DTC对Pb2+、Cu2+、Zn2+的吸附效果随吸附时间、溶液pH增加呈先快速增加后趋于稳定的变化趋势,Pb2+、Cu2+在100 r·min−1、Zn2+在150 r·min−1时表现出较好的吸附效果,Pb2+在材料投量为0.03 g时即近于完全吸附,而Cu2+、Zn2+在材料投量为0.08 g时仍处于上升趋势;适宜吸附条件下PEI-DTC对Pb2+、Zn2+、Cu2+的去除率分别可达97.62%、14.79%、78.92%,对应的吸附量分别为4.005、0.509、4.658 mmol·g−1;PEI-DTC对Pb2+、Zn2+、Cu2+的吸附过程符合Langmuir模型和准二级反应动力学模型,吸附为自发的吸热过程;经4次使用,材料对Pb2+的吸附量仍保留81.14%。  相似文献   

8.
采用水相共沉淀法制备小尺寸磁性Fe3O4纳米颗粒,以没食子酸作为还原剂和表面修饰剂,还原Ag[(NH3)2]+制备出Fe3O4/Ag磁性纳米颗粒。研究该磁性纳米颗粒对水溶液中铅离子的吸附行为,研究结果表明,pH为7.0,吸附温度30℃时可得到最好的处理效果,铅的去除率可达99.7%以上,Fe3O4/Ag颗粒吸附行为符合二级动力学模型(R2 > 0.99)。该磁性纳米颗粒经过多次再生处理后,仍具有很好的吸附效果,表明Fe3O4/Ag在水处理方面拥有良好的应用前景。  相似文献   

9.
以γ-Al2O3为载体,通过等体积浸渍法制备一种载铁催化剂。以微波非均相Fenton反应对甲基橙的脱色效果作为判断催化剂活性的依据,分别考察浸渍液(Fe(NO3)3.9H2O溶液)浓度、焙烧温度、焙烧升温速率、焙烧时间对催化性能的影响,并对复杂协同体系中的反应机制进行初步探讨。结果表明,在浸渍液浓度为8%(质量分数)、焙烧温度为300℃、焙烧升温速率为10℃/min、焙烧时间为2h时催化剂Fe2O3/γ-Al2O3活性最优;复杂协同体系作用机制表现为微波非热效应降低甲基橙分子化学键强度,热效应促使催化剂表面产生"热点",3者(微波、H2O2、催化剂)协同强化催化氧化反应。然而,在微波催化过程中,催化剂孔道坍塌可能影响催化剂活性。  相似文献   

10.
采用水相共沉淀法制备小尺寸磁性Fe3O4纳米颗粒,以没食子酸作为还原剂和表面修饰剂,还原Ag[(NH3)2]’制备出Fe3O4/Ag磁性纳米颗粒。研究该磁性纳米颗粒对水溶液中铅离子的吸附行为,研究结果表明,pH为7.0,吸附温度30℃时可得到最好的处理效果,铅的去除率可达99.7%以上,Fe3O4/Ag颗粒吸附行为符合二级动力学模型(R2〉0.99)。该磁性纳米颗粒经过多次再生处理后,仍具有很好的吸附效果,表明Fe3O4/Ag在水处理方面拥有良好的应用前景。  相似文献   

11.
多巴胺作为海洋贝类生物分泌的粘附蛋白的模拟小分子物质,在典型的海洋环境条件下能够发生自聚合反应覆盖到不同基质上.通过多巴胺的自聚合在磁性纳米Fe3O4表面包覆一层聚合多巴胺(PDA),得到Fe3O4/PDA复合材料.材料的热重分析,磁滞回线,透射电镜,红外光谱等表明PDA包覆到了Fe3O4的表面.PDA具有丰富的酚羟基和氨基,可以通过络合、配位、氢键、π-π堆积等多种作用与其他物质结合.采用亚甲基蓝和日落黄染料作为目标物考察Fe3O4/PDA的吸附性能.研究表明,溶液pH对2种染料的吸附有显著的影响,随溶液pH的升高,阳离子染料亚甲基蓝的吸附容量显著增大,而阴离子染料日落黄吸附容量明显下降.由Langmuir吸附等温模型拟合出亚甲基蓝、日落黄的最大吸附容量分别为204.1和100.0 mg/g.动力学研究表明,这2种染料的吸附能够快速达到平衡.  相似文献   

12.
利用液相还原法制备得到的核壳结构的铁纳米线(Fe@Fe2O3)进行了去除水中 Cd2+的实验研究。考察了溶液初始pH、金属离子浓度、反应时间、吸附剂投加量、反应温度等因素对于吸附反应的影响。采用了X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能量弥散分析(EDS)以及X射线光电子能谱(XPS)等分析手段对材料进行了表征并分析去除机理。结果表明,Fe@Fe2O3纳米线可以有效快速去除水溶液中的Cd2+,吸附机理涉及物理吸附和化学吸附,无氧化还原反应发生。  相似文献   

13.
纳米Fe_3O_4磁性粒子的制备及吸附性能研究   总被引:1,自引:1,他引:0  
采用共沉淀法制备了纳米Fe3O4磁性粒子。应用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X-射线衍射仪(XRD)和振动样品磁强计(VSM)等对纳米磁性粒子的粒径、结构、形貌、磁性能进行了表征,进行了磁分离沉降性能和腐殖酸吸附去除实验研究。结果表明:在未添加任何分散剂的条件下,制得的纳米Fe3O4磁性粒子主要呈球状,平均粒径约11 nm,为典型的反尖晶石结构;饱和磁化强度、矫顽力和剩余磁化强度分别为73.10 emu/g、159.2 A/m和0.41 emu/g;磁分离沉降速度为重力场的50倍;纳米Fe3O4磁性粒子对腐殖酸的吸附符合Langmuir型吸附等温线。  相似文献   

14.
张广金  信欣  毛言  刘韵  陈梅 《环境工程学报》2012,6(5):1595-1598
将一株产絮酵母菌(编号B-02号)发酵后的废菌体制成生物吸附剂,研究该生物吸附剂对废水中Cd2+的生物吸附特性。结果表明:(1)pH值对Cd2+会产生较大的影响,偏酸性(pH=4~6)条件利于吸附;该吸附剂对Cd2+吸附速率较快,8~10 min就可达到吸附平衡;(2)吸附剂的吸附动力学符合二级动力学模型,吸附Cd2+的实验数据对Langmuir等温式的拟合情况良好,吸附剂吸附Cd2+的最大吸附量为70.752 mg/g。用0.5 mol/L HNO3对吸附Cd2+的酵母菌进行解吸,解吸率可达89.7%。  相似文献   

15.
采用沉积-沉淀法制备了碳纳米管(CNTs)和二氧化硅(SiO2)负载的纳米Fe2O3催化剂,将其应用于高毒气体PH3分解反应.通过XRD,TEM,XPS,BET等一系列检测手段,对制备样品的相结构、形貌、组分和比表面积进行了表征.研究结果表明,在PH3催化分解反应过程,极少量的产物P迁移至Fe2O3中,形成金属磷化物FeP作为反应的活性相.与Fe2 O3/SiO2相比,Fe2O3/CNTs显示了较高的催化性能.在440℃反应温度下,Fe2O3/CNTs对PH3分解率达到99.8%.CNTs作为催化剂载体的优秀性能可归因于CNTs良好的导电性能和活性组分在其上的高度分散.  相似文献   

16.
改性油页岩灰渣对水中镉离子的吸附性能   总被引:2,自引:0,他引:2  
采用酸碱化改性方法对油页岩灰渣进行改性,确定最佳酸碱化方案,并研究了环境因素对改性油页岩灰渣吸附镉离子的影响。实验研究结果表明,油页岩灰渣经50%的HNO3和20%的NaOH处理时,对镉离子的吸附能力最强。在吸附温度为30℃,初始溶液pH为6~7条件下,0.6 g的改性油页岩灰渣对50 mg/L Cd2+溶液50 mL,吸附150 min时,其吸附率达到86%以上。在实验条件下,改性油页岩灰渣对Cd2+的吸附符合Langmuir和Freundlich等温吸附方程,相关系数分别为0.9626和0.9944,其对Cd2+的理论饱和吸附量达到7.91 mg/g。改性油页岩灰渣对Cd2+的吸附主要归因于离子交换和表面吸附作用。  相似文献   

17.
李孟  吴思  张斌 《环境工程学报》2012,6(6):1817-1822
以腐殖酸和纳米Fe2O3为对象,着重研究了腐殖酸分子在纳米Fe2O3表面的吸附过程中的疏水效应,借助红外光谱和热重等分析方法研究了腐殖酸吸附前后的疏水性随溶液环境变化的规律。结果表明,当离子强度为0、0.005、0.01和0.05 mol/kg,pH从7变到12时,纳米Fe2O3吸附溶解性腐殖酸分子后形成的复合体的热失重量随着pH的升高先减小后增大。当pH从7升高到10时,亲水性降低,疏水性增强;当pH从10升高到12时,亲水性增强,疏水性降低。当离子强度为0.001 mol/kg,pH从7变到12时,复合体的热失重量随着pH的升高而减小,亲水性降低,疏水性增强。当pH为定值,离子强度变化时,纳米Fe2O3吸附溶解性腐殖酸分子后形成的复合体的热失重量随着离子强度的增加不断变化,曲线呈现出波动趋势,亲、疏水性在交替变化。红外光谱分析结果说明,对纳米Fe2O3吸附溶解性腐殖酸分子后形成的复合体的亲疏水性起主要影响的官能团可能是亲水性的羟基—OH、羰基CO和疏水性的CH2烷烃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号