首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 122 毫秒
1.
研究了不同质量分数石油污染土壤对4种植物种子萌发和幼苗生长的影响,并对幼苗叶片的丙二醛(MDA)含量对污染胁迫的响应进行了研究,以期筛选适合石油污染土壤的潜在修复植物。设置了4组不同质量分数的石油污染土壤处理,对玉米(Zea mays L.)、高粱(Sorghum bicolor(L.)Moench)、披碱草(Elymus dahuricus Turcz.)和翅碱蓬(Suaeda hetroptera Kitag)4种供试植物进行了温室盆栽试验观测。结果表明,试验土属滨海盐渍土,在盐碱化和石油污染的双重胁迫下,不同的植物种子对石油污染表现出不同的耐受性;受试植物在10%(质量分数)石油污染处理下的发芽率均达80%以上,且石油的暴露水平越高,高粱、披碱草和翅碱蓬的种子发芽率越大;玉米和高粱的株高和根长均与土壤中石油浓度呈极显著正相关,而披碱草的根长则与之呈显著负相关;玉米的根冠比与土壤中石油浓度呈显著负相关,高粱和披碱草则与之相关性不明显;在石油污染土壤中生长的玉米和高粱,其叶片中MDA含量与空白对照组存在极显著差异,且随着污染土壤石油质量分数的升高呈现单峰响应特征;披碱草2个生长期(45、60d)叶片内的MDA含量均随土壤中石油浓度的升高而增加,土壤石油污染会对其造成毒害作用。总的来看,相比其他2种植物,高粱和披碱草具有较大的种子发芽率和石油污染耐受性,表明它们具有修复石油污染土壤的应用潜力。  相似文献   

2.
土壤石油烃污染的植物毒性及植物-微生物联合降解   总被引:8,自引:2,他引:6  
通过盆栽实验研究了土壤石油烃污染对玉米和水稻根伸长的影响,并在土壤中接种经过筛选得到的石油烃降解菌,研究石油烃降解菌对石油烃毒性的影响以及对土壤中石油烃的降解。研究结果表明,石油烃浓度低于1 000 mg/kg时对玉米的根系生长有一定的刺激生长作用,随着石油烃浓度的增加,刺激根长生长的作用逐渐降低,研究结果表明,水稻根长受石油烃影响较小。通过对不同处理土壤中石油烃降解的研究结果表明,土壤中种植水稻对石油烃有一定的降解作用,但是不同处理下土壤中的石油烃降解率不同,其中水稻微生物联合处理下土壤中石油烃的降解速率最快,培养期内的降解效率达到53.3%。  相似文献   

3.
利用苯酚诱导获得厌氧菌群JAC1强化去除土壤中的石油烃,对其在厌氧条件下的石油烃降解条件进行了优化,得到最适降解条件为:pH 7.5~8.5,土壤总石油烃(TPH)质量浓度50 mg/kg, NaCl质量分数0.3%,JAC1接菌量0.15 mL/g。厌氧菌群JAC1对石油烃的降解符合一级动力学模型。通过气相色谱质谱联用仪分析,芳香烃较直链烷烃更难降解,推测部分长链烷烃在降解过程中会分解为短链烷烃后再进行降解。基于土壤宏基因组测序分析可知,土壤微生物群落多样性与TPH浓度呈负相关,投加JAC1后土壤中与石油烃降解有关的功能菌群相对丰度呈现出不同程度增高,说明JAC1有助于建立一个高效的微生物降解体系来强化石油烃降解。  相似文献   

4.
为利用植物油去除污染土壤中的多环芳烃,研究了应用活性炭F400吸附柱再生含多环芳烃植物油的可行性,对含高浓度多环芳烃的植物油进行二级再生处理,优化了过程参数,比较了原植物油和经活性炭再生的植物油去除土壤中多环芳烃能力的差别.结果表明,活性炭吸附法可以实现含多环芳烃植物油的再生,证明了修复策略的可行性.二级处理可以进一步吸附植物油中的多环芳烃,且高分子量多环芳烃几乎完全被去除.再生植物油和原植物油去除土壤中多环芳烃的能力没有明显差别.  相似文献   

5.
不同处理条件对石油污染土壤植物修复的影响   总被引:4,自引:0,他引:4  
针对石油烃植物修复过程中的主要影响因素,研究了不同植物种类、不同土壤调理剂和菌剂使用等不同条件对土壤中石油烃植物修复效果的影响.结果表明,不同种类的植物修复可使总石油烃的年降解率达到37.8% ~ 73.98%,其中大豆和碱蓬具有较好的修复效果;3种不同土壤调理剂对石油烃污染土壤修复的效果为商业添加剂>牛粪>蛭石;先微生物修复后种植植物的处理要优于单独的微生物修复及微生物、植物修复同步进行的处理.  相似文献   

6.
热强化气相抽提技术(T-SVE)在修复半挥发性石油烃污染土壤方面极具应用潜力。本文基于实验室模拟T-SVE装置,研究了加热温度及土壤含水量、有机质对4种半挥发性石油烃(正十三烷、正十四烷、正十五烷和正十六烷)去除效率的影响,并对石油烃去除动力学进行了拟合。结果表明,温度决定性地影响了石油烃污染土壤的修复效率,污染土壤残留率与加热温度基本呈反比。石油烃去除过程符合Elovich和Freundlich热脱附动力学方程。加热温度为140℃时,土壤含水量(5%~30%)的增加降低了石油烃去除效率;当温度上升到180℃,石油烃去除率在土壤含水量5%~20%时也表现出降低趋势,但在土壤含水量为30%时反而达到最高值。土壤有机质含量增加明显降低了石油烃去除率,尤其对于辛醇-水分配系数值高的石油烃;当加热温度从140℃升高到220℃,土壤有机质对石油烃污染去除的限制明显降低。实验获得结果可为T-SVE技术修复石油烃污染的工程设计提供参考。  相似文献   

7.
有机物污染环境的植物修复研究进展   总被引:2,自引:0,他引:2  
本文综述了近年来国内外有机物污染环境的植物修复研究进展情况 ,重点介绍了多环芳烃、农药、多硝基芳香化合物等持久性有机污染物以及石油和燃油添加剂污染土壤、水体的植物修复原理与技术。  相似文献   

8.
不同植物-微生物联合修复体系下石油烃的降解   总被引:1,自引:0,他引:1  
石油烃作为环境中广泛存在的有机污染物之一,对人体健康造成严重的危害。以位于天津的大港油田原油污染土壤中筛选出的耐低温高效石油烃降解菌为供试菌株,以小麦、紫花苜蓿作为供试植物,比较不同类型植物以及不同的外源菌接种方式对石油降解的影响,并采用荧光素比色法分析荧光素二乙酸酯(FDA)酶活性随时间的变化规律。经过70 d的降解,原状土壤的总石油烃含量从30 720 mg·kg~(-1)下降为26 800 mg·kg~(-1),降解率为12.76%。相比于小麦,紫花苜蓿对石油烃的降解具有更好的促进效果,降解率为24.85%。接种菌悬液后再种植植物时,石油烃降解效果接近于单独接种菌悬液处理。小麦-固定化外源菌处理条件下,降解率为21.10%,实验后期石油烃的降解速率远远高于其他处理,表现出良好的修复潜力。FDA酶活性经历了先下降、后上升再下降直至平缓的过程,并且受到种植植物和投加外源菌的影响。  相似文献   

9.
采用固相萃取(SPE)样品富集前处理技术和气相色谱/质联联用(GC/MS)分析方法,对北方某工业城市给水系统中的多环芳烃类化合物的含量水平进行了研究.结果表明,该城市多环芳烃污染水平较高,但总浓度均未超过城市供水水质标准(CJ/T206-2005)中限值(2μg/L).近郊水库由于受到燃料燃烧产生的多环芳烃的污染,成为该市饮用水中多环芳烃污染的主要来源.传统的混凝-砂滤工艺对多环芳烃有较好的去除效果,总去除率可达55.9%.  相似文献   

10.
采集辽河油田石油污染土壤样品并用离心法提取胶体,定性和定量研究了石油污染土壤胶体的主要物理化学性质,通过间歇实验研究了不同p H(p H=4~9)、不同价态阳离子(Na+、Ca2+和Fe3+)和不同价态阴离子(NO-3、SO2-4和PO3-4)存在下的胶体稳定性,比较了阳离子存在下石油污染土壤胶体和未受污染土壤胶体稳定性。研究结果表明,该石油污染土壤胶体总石油烃含量为123.24 mg/g,石油烃主要为直链烷烃和环烷烃。相同p H条件下石油污染土壤胶体Zeta电位负值比未受污染土壤胶体Zeta电位负值高。石油污染土壤胶体稳定性随p H值增加而增加,随着阳离子价数升高而减小,随阴离子价数升高而增大。Ca2+和Cu2+存在下,石油污染土壤胶体比未受污染土壤胶体稳定性更小。Na+和Fe3+存在下,石油污染土壤胶体比未受污染土壤胶体稳定性更大。  相似文献   

11.
Phytoremediation is a promising technique for cleaning petroleum contaminated soils. In this study, the effects of two grass species (Festuca arundinacea Schreb. and Festuca pratensis Huds.), infected (E(+)) and non-infected (E(-)) by endophytic fungi (Neotyphodium coenophialum and Neotyphodium uncinatum, respectively) on the degradation of petroleum hydrocarbons in an aged petroleum contaminated soil was investigated. Plants were grown in the soil for 7 months and unplanted soil considered as control. At the end of the experiment, total and oil-degrading bacteria, dehydrogenase activity, water-soluble phenols, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs) contents were measured in the soil. The results demonstrated that E(+) plants contained more root and shoot biomass than E(-) plants and created higher levels of water-soluble phenols and dehydrogenase activity in the soil, while there was no significant difference in bacterial counts of planted soils. Planting stimulated total and oil-degrading bacterial numbers, dehydrogenase activity and the soil content of water-soluble phenols. Regardless of endophyte infection, PAH and TPH removal in the rhizosphere of plants were 80-84 and 64-72% respectively, whereas the removals in controls were 56 and 31%, respectively. It was revealed that TPHs in retention time range of n-alkanes with C(10)-C(25) chain lengths and TPH were more degraded in the rhizosphere of E(+) plants compared to E(-) ones. Thus, grasses infected with endophytic fungi could be more efficient for removal of TPH from oil-contaminated soils.  相似文献   

12.
Remediation of soils contaminated with petroleum is a challenging task. Four different bioremediation strategies, including natural attenuation, biochar amendment, phytoremediation with ryegrass, and a combination of biochar and ryegrass, were investigated with greenhouse pot experiments over a 90-day period. The results showed that planting ryegrass in soil can significantly improve the removal rate of total petroleum hydrocarbons (TPHs) and the number of microorganisms. Within TPHs, the removal rate of total n-alkanes (45.83 %) was higher than that of polycyclic aromatic hydrocarbons (30.34 %). The amendment of biochar did not result in significant improvement of TPH removal. In contrast, it showed a clear negative impact on the growth of ryegrass and the removal of TPHs by ryegrass. The removal rate of TPHs was significantly lower after the amendment of biochar. The results indicated that planting ryegrass is an effective remediation strategy, while the amendment of biochar may not be suitable for the phytoremediation of soil contaminated with petroleum hydrocarbons.  相似文献   

13.
Liste HH  Prutz I 《Chemosphere》2006,62(9):1411-1420
Two greenhouse pot experiments were conducted to investigate the potential of 13 plant species (grasses, cruciferes, legumes, herbs) to thrive in a long-term contaminated soil from a former manufactured gas plant (MGP) site, to promote the proliferation of total and aromatic ring dioxygenase-expressing bacteria (ARDB) in the root zone, and to foster the biodegradation of petrol hydrocarbons (PHCs) and polycyclic aromatic hydrocarbons (PAHs). PHCs at 23200 mg kg(-1) and PAHs at 2194 mg kg(-1) reduced seed germination, plant survival, and shoot yields for most plants. Total bacteria and ARDB were generally more abundant in contaminated soil and were most numerous in the rhizosphere of mustard. During 68 d, the loss of total petrol hydrocarbons (TPHs) and total US EPA priority PAHs (TPAHs) was greatest in soil planted with hemp and mustard. Pea, cress, and pansy increased the amounts of PAHs extracted from soil, including an almost 60% increase for dibenzo(ah)anthracene. Plants may enhance the chemical extractability and perhaps biological availability of initially unextractable molecules.  相似文献   

14.
Petroleum ether was used to extract petroleum hydrocarbons from soils collected from six oil fields with different history of exploratory and contamination. It was capable of fast removing 76–94 % of the total petroleum hydrocarbons including 25 alkanes (C11–C35) and 16 US EPA priority polycyclic aromatic hydrocarbons from soils at room temperature. The partial least squares analysis indicated that the solvent extraction efficiencies were positively correlated with soil organic matter, cation exchange capacity, moisture, pH, and sand content of soils, while negative effects were observed in the properties reflecting the molecular size (e.g., molecular weight and number of carbon atoms) and hydrophobicity (e.g., water solubility, octanol–water partition coefficient, soil organic carbon partition coefficient) of hydrocarbons. The high concentration of weathered crude oil at the order of 105 mg kg?1 in this study was demonstrated adverse for solvent extraction by providing an obvious nonaqueous phase liquid phase for hydrocarbon sinking and increasing the sequestration of soluble hydrocarbons in the insoluble oil fractions during weathering. A full picture of the mass distribution and transport mechanism of petroleum contaminants in soils will ultimately require a variety of studies to gain insights into the dynamic interactions between environmental indicator hydrocarbons and their host oil matrix.  相似文献   

15.
A two-step analytical method is developed for the isolation and characterization of polycyclic aromatic hydrocarbons (PAHs) in crude oil contaminated soil. In the first step, those crude oil components were isolated which are easily mobilized with water from the contaminated soil (determination of groundwater pollution potential). In the second step, the fraction containing the remaining crude oil compounds was extracted using toluene. After the cleanup of the fractions, both fractions were analyzed using high-performance liquid chromatography (HPLC). The HPLC of the toluene extracted fraction shows that along with the sixteen priority pollutants from the US-EPA list, many other polycyclic aromatic hydrocarbons (PAHs) are present as well. It is evident from the chromatograms that a significant amount of PAHs are present as is also the case in the fractions eluted by water. The described method allows the determination of total organic pollutants from crude oil, some of them being potential groundwater contaminants. The major part of the total pollutants could not be mobilized by water and therefore remains in the soil, which was extracted in the second step.  相似文献   

16.
Enhanced rhizosphere degradation uses plants to stimulate the rhizosphere microbial community to degrade organic contaminants. We measured changes in microbial communities caused by the addition of two species of plants in a soil contaminated with 31,000 ppm of total petroleum hydrocarbons. Perennial ryegrass and/or alfalfa increased the number of rhizosphere bacteria in the hydrocarbon-contaminated soil. These plants also increased the number of bacteria capable of petroleum degradation as estimated by the most probable number (MPN) method. Eco-Biolog plates did not detect changes in metabolic diversity between bulk and rhizosphere samples but denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified partial 16S rDNA sequences indicated a shift in the bacterial community in the rhizosphere samples. Dice coefficient matrices derived from DGGE profiles showed similarities between the rhizospheres of alfalfa and perennial ryegrass/alfalfa mixture in the contaminated soil at week seven. Perennial ryegrass and perennial ryegrass/alfalfa mixture caused the greatest change in the rhizosphere bacterial community as determined by DGGE analysis. We concluded that plants altered the microbial population; these changes were plant-specific and could contribute to degradation of petroleum hydrocarbons in contaminated soil.  相似文献   

17.
An in situ test method to measure the aerobic biodegradation rates of hydrocarbons in contaminated soil is presented. The test method provides an initial assessment of bioventing as a remediation technology for hydrocarbon-contaminated soil. The in situ respiration test consists of ventilating the contaminated soil of the unsatiirated zone with air and periodically monitoring the depletion of oxygen (O2) and production of carbon dioxide (CO2) over time after the air is turned off. The test is simple to implement and generally takes about four to five days to complete. The test was applied at eight hydrocarbon-contaminated sites of different geological and climatic conditions. These sites were contaminated with petroleum products or petroleum fuels, except for two sites where the contaminants were primarily polycyclic aromatic hydrocarbons. Oxygen utilization rates for the eight sites ranged from 0.02 to 0.99 percent O2/hour. Estimated biodegradation rates ranged from 0.4 to 19 mg/kg of soil/day. These rates were similar to the biodegradation rates obtained from field and pilot studies using mass balance methods. Estimated biodegradation rates based on O2 utilization were generally more reliable (especially for alkaline soils) than rates based on CO2 production. CO2 produced from microbial respiration was probably converted to carbonate under alkaline conditions.  相似文献   

18.
Polycyclic aromatic hydrocarbons in fuel-oil contaminated soils, Antarctica   总被引:6,自引:0,他引:6  
Where fuel oil spills have occurred on Antarctic soils polycyclic aromatic hydrocarbons (PAH) may accumulate. Surface and subsurface soil samples were collected from fuel spill sites up to 30 years old, and from nearby control sites, and analysed for the 16 PAHs on the USEPA priority pollutants list, as well as for two methyl substituted naphthalenes, 1-methylnaphthalene and 2-methylnaphthalene. PAH levels ranged from 41-8105 ng g-1 of dried soil in the samples from contaminated sites and were below detection limits in control site samples. PAH were detected in surface soils and had migrated to lower depths in the contaminated soil. The predominant PAH detected were naphthalene and its methyl derivatives.  相似文献   

19.
Responses of three grass species to creosote during phytoremediation   总被引:6,自引:0,他引:6  
Phytoremediation of creosote-contaminated soil was monitored in the presence of Tall fescue, Kentucky blue grass, or Wild rye. For all three grass species, plant growth promoting rhizobacteria (PGPR) were evaluated for plant growth promotion and protection of plants from contaminant toxicity. A number of parameters were monitored including plant tissue water content, root growth, plant chlorophyll content and the chlorophyll a/b ratio. The observed physiological data indicate that some plants mitigated the toxic effects of contaminants. In addition, in agreement with our previous experiments reported in the accompanying paper (Huang, X.-D., El-Alawi, Y., Penrose, D.M., Glick, B.R., Greenberg, B.M., 2004. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soil. Environ. Poll. doi: 10.1016/j.envpol.2003.09.031), PGPR were able to greatly enhance phytoremediation. PGPR accelerated plant growth, especially roots, in heavily contaminated soils, diminishing the toxic effects of contaminants to plants. Thus, the increased root biomass in PGPR-treated plants led to more effective remediation.  相似文献   

20.
Soil pollution by hydrocarbons (aromatic and aliphatic hydrocarbons) is a major environmental issue. Various treatments have been used to remove them from contaminated soils. In our previous studies, the ability of magnetite has been successfully explored to catalyze chemical oxidation for hydrocarbon remediation in batch slurry system. In the present laboratory study, column experiments were performed to evaluate the efficiency of magnetite catalyzed Fenton-like (FL) and activated persulfate (AP) oxidation for hydrocarbon degradation. Flow-through column experiments are intended to provide a better representation of field conditions. Organic extracts isolated from three different soils (an oil-contaminated soil from petrochemical industrial site and two soils polluted by polycyclic aromatic hydrocarbon (PAH) originating from coking plant sites) were spiked on sand. After solvent evaporation, spiked sand was packed in column and was subjected to oxidation using magnetite as catalyst. Oxidant solution was injected at a flow rate of 0.1 mL min?1 under water-saturated conditions. Organic analyses were performed by GC–mass spectrometry, GC–flame ionization detector, and micro-Fourier transform infrared spectroscopy. Significant abatement of both types of hydrocarbons (60–70 %) was achieved after chemical oxidation (FL and AP) of organic extracts. No significant by-products were formed during oxidation experiment, underscoring the complete degradation of hydrocarbons. No selective degradation was observed for FL with almost similar efficiency towards all hydrocarbons. However, AP showed less reactivity towards higher molecular weight PAHs and aromatic oxygenated compounds. Results of this study demonstrated that magnetite-catalyzed chemical oxidation can effectively degrade both aromatic and aliphatic hydrocarbons (enhanced available contaminants) under flow-through conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号