首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Foshan is the most air-polluted city in Pearl River Delta. Non-methane hydrocarbons (NMHCs) were investigated for the first time in Foshan in winter 2008. Ethene, ethane, ethyne, propane, i-pentane, and toluene were the most abundant hydrocarbons and observed to be higher in Foshan than those in many other cities in China. Different from other cities, ethene and ethane were observed to be the two highest compounds in Foshan. Generally, the most abundant hydrocarbons showed high mixing ratios in the morning (0930-1030 hours), decreased to the lowest level in the afternoon (1430-1530 hours), and increased to higher value in the evening (1930-2030 hours). But i-pentane exhibited a different diurnal pattern with the highest level (13.4 ± 5.8 ppbv) in the afternoon, implying the acceleration of solvent evaporation resulting from higher temperature. Correlation coefficients (R(2)?= 66% for n = 6 at 95% confidence level) of the individual hydrocarbons with ethyne and i-pentane indicated vehicular emissions were the main sources of ethene, propene, i-butene, isoprene, benzene and toluene, while gasoline evaporation was responsible for n-pentane, n-hexane, and n-heptane. The good correlation of most of the hydrocarbons with ethyne, indicating vehicular emissions, were the main sources of NMHCs. B/T ratio was 0.36 ± 0.06, implying vehicular emissions acted as the major contributors as well as additional emissions of toluene emitted from solvent usage. According to investigation, it also suggested that LPG leakage was the main source of propane, while NG leakage was responsible for ethane in Foshan City.  相似文献   

2.
Annual trends of a group of 66 volatile organic compounds (VOCs), containing 20 ozone precursors, were the aim of a sampling campaign carried out for a year in air at urban and industrial areas from Tarragona region. VOCs were determined by active collection on multisorbent tubes, followed by thermal desorption and gas chromatography–mass spectrometry. The analytical method was developed and validated, showing good levels of detection and quantification, recoveries, precision, and linearity for all the compounds in the range being studied. All the industrial and urban samples taken during the sampling campaign were similar in their qualitative composition. The most abundant compound in all urban and industrial sites was i-pentane, with concentrations between 15.2 and 202.1 μg m???3 in urban sites and between 1.3 and 98.6 μg m???3 in industrial sites. In urban sites, the following compounds in order of abundance were toluene, n-pentane, m,p-xylene, and o-xylene, with maximum levels of 150.6, 45.8, 42.3, and 31.7 μg m???3, respectively. In industrial sites, the most abundant compounds depended on the sampled site.  相似文献   

3.
This study measures the effect of emissions from an airport on the air quality of surrounding neighborhoods. The ambient concentrations of benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) were measured using passive samplers at 15 households located close to the airport (indoor, outdoor, and personal), at the end of airport runways and an out-of-neighborhood location. Measurements occurred over a 48-h period during summer 2006 and winter 2006?C2007. The average concentrations were 0.84, 3.21, 0.30, 0.99, and 0.34 ??g/m3 at the airport runways and 0.84, 3.76, 0.39, 1.22, and 0.39 ??g/m3 in the neighborhood for benzene, toluene, ethylbenzene, m-, p-, and o-xylene. The average neighborhood concentrations were not significantly different to those measured at the airport runways and were higher than the out-of-neighborhood location (0.48, 1.09, 0.15, 0.78, and 0.43 ??g/m3, each BTEX). B/T ratios were used as a tracer for emission sources and the average B/T ratio at the airport and outdoors were 0.20 and 0.23 for the summer and 0.40 and 0.42 for the winter, suggesting that both areas are affected by the same emission source. Personal exposure was closely related to levels in the indoor environment where subjects spent most of their time. Indoor/outdoor (I/O) ratios for BTEX ranged from 1.13 to 2.60 and 1.41 to 3.02 for summer and winter. The seasonal differences in I/O ratios reflected residential ventilation patterns, resulting in increased indoor concentrations of volatile organic compounds during winter.  相似文献   

4.
Results of intermittent monitoring of six aromatic hydrocarbons (benzene, toluene, ethyl-benzene, m-xylene, p-xylene and o-xylene), carbon monoxide and oxides of nitrogen over a thirteen year period at a site in central London (Exhibition Road) are presented. Four monitoring regimes were undertaken; namely, 1979, 1982/83, 1986/87 and 1991/92. The summertime daytime mean ambient concentrations of the measured parameters at this site are presented. The reported concentrations show a reduction from 1979 to 1992 by approximately a factor of two, despite national increases in motor fuel consumption and the volume of traffic. Relevant European Community legislation covering emissions from motor-vehicles are outlined and comparisons are made with emissions from motor vehicles predicted from the UK national inventory. The importance of the frequency of measurements was also noted.  相似文献   

5.
利用手工及自动监测数据,结合最大增量反应活性(MIR)系数法,对广州市大气挥发性有机物(VOCs)污染特征及臭氧生成潜势(OFP)进行了研究。结果表明:广州市大气VOCs总体积分数为73.85×10-9,其中,丙烷、甲醛、乙酸乙酯的体积分数最高,分别为5.59×10-9、4.87×10-9、4.25×10-9。组成特征分析结果显示,含氧挥发性有机物(OVOCs)和烷烃为主要污染物种类,分别贡献了总VOCs的34.32%和32.34%。在空间分布上,各站点VOCs体积分数自南向北不断降低,番禺市桥站(南部,76.16×10-9)>公园前站(中部,75.58×10-9)>花都梯面站(北部,69.80×10-9)。广州市大气中甲醛和乙醛的比值为1.22,表明本地排放对广州市醛酮类化合物的贡献较大;乙苯和间/对-二甲苯的比值为0.35,表明广州市气团老化程度低,VOCs主要受本地排放影响;甲苯和苯的比值显示,公园前站苯系物主要受机...  相似文献   

6.
Mechanistic modeling of how algal species produce metabolites (e.g., taste and odor compounds geosmin and 2-methyl isoborneol (2-MIB)) as a biological response is currently not well understood. However, water managers and water utilities using these reservoirs often need methods for predicting metabolite production, so that appropriate water treatment procedures can be implemented. In this research, a heuristic approach using Adaptive Network-based Fuzzy Inference System (ANFIS) was developed to determine the underlying nonlinear and uncertain quantitative relationship between observed cyanobacterial metabolites (2-MIB and geosmin), various algal species, and physical and chemical variables. The model is proposed to be used in conjunction with numerical water quality models that can predict spatial–temporal distribution of flows, velocities, water quality parameters, and algal functional groups. The coupling of the proposed metabolite model with the numerical water quality models would assist various utilities which use mechanistic water quality models to also be able to predict distribution of taste and odor metabolites, especially when monitoring of metabolites is limited. The proposed metabolite model was developed and tested for the Eagle Creek Reservoir in Indiana (USA) using observations over a 3-year period (2008–2010). Results show that the developed models performed well for geosmin (R 2?=?0.83 for all training data and R 2?=?0.78 for validation of all 10 data points in the validation dataset) and reasonably well for the 2-MIB (R 2?=?0.82 for all training data and R 2?=?0.70 for 7 out of 10 data points in the validation dataset).  相似文献   

7.
Diffusive samplers were used to measure the vertical concentrations of benzene, toluene, n-hexane, cyclohexane, ethylbenzene and o-, m- and p-xylenes on both sides of two NS-oriented street canyons in Murcia (Spain) during a 5-day period. Non-dimensional relationships of concentration and height were calculated in order to study the behaviour of their concentration vertical profiles. The results show that the vertical profiles of benzene, toluene, n-hexane and cyclohexane concentrations were similar in both streets and on both sides of each street. Some differences were found in vertical profiles between streets and sides for ethylbenzene and xylenes, probably due to their higher affinity for adsorption into building materials. The similarities found for the first set of VOCs suggest that the dynamics of the dispersion was the same for both streets and was mainly influenced by microscale thermal effects. Finally, the concentration measurements of benzene, toluene, n-hexane, cyclohexane, and ethylbenzene were adjusted to expressions in the form c?=?c 0(h/h 0) A , and a regression coefficient R 2?=?0.962 (p?=?0.0000) was obtained. The decreasing concentration of these compounds with height should be taken into account when assessing population exposure to these pollutants.  相似文献   

8.
Urbanization can increase the vulnerability of soils to various types of contamination. Increased contamination of urban soils with polycyclic aromatic hydrocarbon (PAH) could relate to increased number of petrol pump stations and mechanical workshops—a phenomenon that needs to be constantly monitored. This study was undertaken to explore the soil PAH levels in Rawalpindi and Islamabad urban areas in relation to land use activities. Composite soil samples from petrol pump stations and mechanical workshops (n?=?32) areas were evaluated for five PAHs––naphthalene, phenanthrene, pyrene, benzo[a]pyrene, and indeno(1,2,3-cd)pyrene—and compared with control area locations with minimum petroleum-related activity (n?=?16). Surface samples up to 3 cm depth were collected and extraction of analytes was carried out using n-hexane and dichloromethane. Prior to running the samples, standards (100 μg ml–1) were run on HPLC to optimize signal to noise ratio using acetonitrile as mobile phase at a flow rate of 1.25 ml/min at 40 °C. Significant differences between petrol pump stations and mechanical workshop areas were observed for individual PAH as well as with control area soil samples. Naphthalene was found to be the most abundant PAH in soil, ranging from 2.47 to 24.36 mg kg–1. Correlation between the benzo[a]pyrene (BaP) level in soil and the total PAH concentration (r?=?0.82, P?<?0.0001) revealed that BaP can be used as a potential marker for PAH pollution. A clear segregation between petrogenic and pyrogenic sources of contamination was observed when low molecular weight PAHs detected in soil was plotted against high molecular weight PAHs. The former source comprised lubricants and used engine oil found at mechanical workshops, whereas the latter could be mostly attributed to vehicular emission at petrol pumps. The results indicate that PAH contamination in urban areas of Rawalpindi and Islamabad has direct relevance with land use for petroleum activity. We conclude that in order to reduce the soil PAH exposure in urban environment, petrol pumps and mechanical workshops must be shifted to less densely populated areas because of their role as important point sources for PAH emission.  相似文献   

9.
This study reports source apportionment of polycyclic aromatic hydrocarbons (PAHs) in particulate depositions on vegetation foliages near highway in the urban environment of Lucknow city (India) using the principal components analysis/absolute principal components scores (PCA/APCS) receptor modeling approach. The multivariate method enables identification of major PAHs sources along with their quantitative contributions with respect to individual PAH. The PCA identified three major sources of PAHs viz. combustion, vehicular emissions, and diesel based activities. The PCA/APCS receptor modeling approach revealed that the combustion sources (natural gas, wood, coal/coke, biomass) contributed 19–97% of various PAHs, vehicular emissions 0–70%, diesel based sources 0–81% and other miscellaneous sources 0–20% of different PAHs. The contributions of major pyrolytic and petrogenic sources to the total PAHs were 56 and 42%, respectively. Further, the combustion related sources contribute major fraction of the carcinogenic PAHs in the study area. High correlation coefficient (R 2 > 0.75 for most PAHs) between the measured and predicted concentrations of PAHs suggests for the applicability of the PCA/APCS receptor modeling approach for estimation of source contribution to the PAHs in particulates.  相似文献   

10.
The presence of inorganic nitrogen species in water can be unsuitable for drinking and detrimental to the environment. In this study, a surface-enhanced Raman spectroscopy (SERS) method coupled with a commercially available gold nanosubstrate (a gold-coated silicon material) was evaluated for the detection of nitrate and nitrite in water and wastewater. Applications of SERS coupled with gold nanosubstrates resulted in an enhancement of Raman signals by a factor of ~104 compared to that from Raman spectroscopy. The new method was able to detect nitrate with linear ranges of 1–10,000 mg NO3 ?/L (R 2?=?0.978) and 1–100 mg NO3 ?/L (R 2?=?0.919) for water and wastewater samples, respectively. Among the common anions, phosphate appeared to be the major interfering anion affecting nitrate measurement. Nevertheless, the percentage error of nitrate measurement in wastewater by the proposed SERS method was comparable to that by ion chromatography. The nitrate detection limits in water and wastewater samples were about 0.5 mg/L. The SERS method could simultaneously detect sulfate, which may serve as a reference standard in water. These results suggested that the SERS coupled with nanosubstrates is a promising method to determine nitrate concentrations in water and wastewater.  相似文献   

11.
In this study, variance analysis technique on unbalanced data was examined, and in this sense, Type II (fitting constants) methods were studied. The aim of this study was to show that meaningful evaluations can be performed even in unbalanced conditions and to contribute to the present investigations in biological area. In the implementation part of the study, the juvenile leaf densities of Posidonia oceanica—which is a sea grass that grows in Izmir Bay, and has very important ecological effects—in various regions and in various depths were determined. The results revealed that depth affect number of juvenile leaf (d.f.?=?3, F?=?523.90, R 2?=?0.998, p?F?=?41.53, p?F?=?19.65, p?p?p?p?p?相似文献   

12.
Concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) were measured in 28 surface soils samples collected from Urumqi, northwest China, for examination of distributions, source contributions, and potential health effects. The results indicated that the sum of 16 PAHs concentration ranged from 331 to 15,799 μg?kg?1 (dw) in soils, with a mean of 5,018?±?4,896 μg?kg?1 (n?=?28). The sum of seven carPAHs concentration ranged from 4 to 1,879 μg?kg?1 (dw; n?=?28). The highest ∑PAHs concentrations were found at roadsides and industrial sites, followed by those at parks, rural areas, and business/residential areas. Coal combustion, emission of diesel and gasoline from vehicles, and petroleum source were four sources of PAHs as determined by PMF analysis, which contributed 51.19, 19.02, 18.35, and 11.42 % to the PAH sources, respectively. Excellent coefficients of correlation between the measured and predicted PAHs concentrations suggested that the PMF model was very effective to estimate sources of PAHs in soils. Incremental lifetime cancer risk values at the 95th percentile due to human exposure to surface soils PAHs in Urumqi were 2.02?×?10?6 for children and 2.72?×?10?5 for adults. The results suggested that the current PAHs levels in soils from Urumqi were pervasive and moderately carcinogenic to children and adults.  相似文献   

13.
In this study, water samples were collected from 86 water treatment plants for analysis of haloacetic acids (HAAs) and trihalomethanes (THMs) from February to March, 2007 and from July to August, 2007. Both seasonal and geographical variations of disinfection by-products (DBPs) in drinking water of Taiwan were presented. The results showed that the five HAA concentrations (HAA5) were 1.0–38.9 μg/L in the winter and 0.2–46.7 μg/L in the summer; and the total THMs were ND-99.4 μg/L in the winter and ND-133.2 μg/L in the summer. For samples taken from the main Taiwan island, dichloroacetic acid (29.4–31.7%) and trichloroacetic acid (25.3–27.6%) were the two major HAA species, and trichloromethane was the major THM species (49.9–62.2%) in finished water. For water treatment plants located on the offshore islands outside of Taiwan, high bromide concentration was found in raw water, and higher percentage of brominated THMs and HAAs were formed in the overall formation. A statistically significant (P?<?0.005) logarithmic linear regression model was found to be useful to describe the correlations between TTHM and HAA5 or nine HAAs (HAA5?=?1.219 ×TTHM 0.754, R 2?=?0.658; HAA9?=?1.824 ×TTHM 0.735, R 2?=?0.678). No apparent difference was observed for DBPs concentrations between finished water and distribution samples in this study.  相似文献   

14.
Water eutrophication in subtropical regions of southern China threatens watershed health and is of major concern. However, annual phosphorus (P) loading and its dominant causes are still unclear, especially at the watershed scale. In this study, we investigated dynamic P loadings and associated factors (e.g., land use, livestock production, and runoff depth) in ten watersheds that varied in area from 9 to 5,212 ha in a hilly area of Hunan Province, China. A flowmeter was installed at the outlet of each watershed, and total P (TP) and soluble P (SP) concentrations were monitored periodically from June 2010 to October 2012. The results showed that annual P loadings (APLs) in the ten watersheds ranged from 22.8 to 247.8 kg P/km2 and that P loss primarily occurred from April to June of each year during the main rainfall season in the study area. In addition, the average eutrophication (>0.05 mg P/L) ratio for stream waters was 86.7 % during the study period, which was indicative of a potentially serious condition for the local water environments. Annual P loadings were linearly related to livestock density (LD; R?=?0.92, p?<?0.01), whereas the eutrophication ratio of stream water was significantly (p?<?0.05) correlated with LD (R?=?0.61), percentage cropland (R?=?0.71), and percentage forest cover (R?=??0.68). Thus, it is concluded that the control of livestock production has the greatest potential for reducing P loadings in watersheds in this subtropical area. This will be beneficial to the amelioration and protection of local environment.  相似文献   

15.
In agroecosystems, the annual carbon (C) inputs to soil are one of the most promising greenhouse gas mitigation options. Net primary productivity (NPP) provides the inputs of C in ecosystems that can potentially be sequestered in soil organic matter. In this study, we estimates the C density and accumulation rate in rice–wheat agroecosystem at four sites of Indo-Gangetic Plains and Vindhyan highlands through amalgamation of ground truth (GT) and remote sensing (RS) approach. In addition to this, we validated field-measured aboveground net production (ANP) with remotely sensed SPOT-Vegetation data. ANP of the sites ranged from 6.8 to 11.1 and 3.3 to 8.8 t-C ha?1 year?1 for GT and RS, respectively. Both estimates (GT and RS) were linearly and significantly related with each other (y?=?1.33x???5.82, R 2?=?0.93, P?=?0.04; where x?=?GT ANP and y?=?RS ANP). For the whole region, total NPP (rice?+?wheat) was ranged from 7.9 to 12.5 t-C ha?1 year?1. The C accumulation potential of the present agroecosystems was 9.1 and 1.9 t-C ha?1 year?1 in the form of ANP and belowground NPP (BNP), respectively. The aboveground C stock of agroecosystem allocated in foliage (7.8 %), stem (57.6 %), and grain (35.1 %). Survey about the fate of post-harvested materials indicated that aboveground portion of the crop is almost used completely within the year for different purposes including human consumption and cattle feeding. Therefore, only BNP and litter contribute to long-term C sequestration. Since agroecosystem has enormous potential to sequester C, better management of aboveground portion NPP of the crop may enhance C sequestration potential of agroecosystem.  相似文献   

16.
A three-dimensional regression analysis attempted to model mesozooplankton (MSP) biomass using sea surface temperature (SST) and chlorophyll-a (Chl-a). The study was carried out from January 2014 to July 2015 in the southwestern Bay of Bengal (BoB) and sampling was carried out on board Sagar Manjusha and Sagar Purvi. SST ranged from 26.2 to 33.1 °C while Chl-a varied from 0.04 to 6.09 μg L?1. During the course of the study period, there was a weak correlation (r?= 0.32) between SST and Chl-a statistically. MSP biomass varied from 0.42 to 9.63 mg C m?3 and inversely related with SST. Two kinds of approaches were adopted to develop the model by grouping seasonal datasets (four seasonal algorithms) and comprising all datasets (one annual algorithm). Among the four functions used (linear, paraboloid, the Lorentzian and the Gaussian functions), paraboloid model was best suited. The best seasonal and annual algorithms were applied in the synchronous MODIS-derived SST and Chl-a data to estimate the MSP biomass in the southwestern BoB. The modelled MSP biomass was validated with field MSP biomass and the result was statistically significant, showing maximum regression coefficient for the seasonal algorithms (R2?=?0.60; p?=?0.627; α?= 0.05), than the annual algorithm (R2?=?0.52; p?=?0.015, α?=?0.05).  相似文献   

17.
Ozone, NO2, SO2, CO, PM10 and meteorological parameters were measured simultaneously during the summer?Cautumn season 2007 in Osijek??the eastern, flat, agricultural part of Croatia. Fourier analysis confirms the existence of variation in ozone volume fractions with periods ranging from the usual semi-daily and daily to 7 and 28 daily cycles. The relationships between O3 and other variables were modelled in three ways: principal component analysis, multiple linear regression and principal component regression. The results of the principal component analysis detected underlying relationships among ozone concentrations and meteorological variables. An extremely simple meteorological model is suitable for the prediction of ozone levels. The meteorological factors, temperature and cloudiness played a main role in the MLR model (R 2?=?0.83). The application of the principal component regression approach confirmed that the original variables associated with the valid principal components were meteorological variables (R 2?=?0.82).  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) in surface microlayer (SML) and subsurface water (SSW) of Lagos Lagoon were investigated using gas chromatography-electron capture detector (GC-ECD) technique to ascertain their occurrence and spatial distribution, origin, enrichment, and carcinogenicity. Total PAH (ΣPAH) concentrations ranged from 9.10 to 16.20 μg L?1 in the SML and 8.90 to 13.30 μg L?1 in the SSW. ΣPAH concentrations were relatively higher in the SML than the underlying SSW samples. The enrichment factors (EFs) of ΣPAHs ranged from 0.76 to 1.74 while the EFs of the individual PAHs varied from 0.50 to 2.09. In general, the EFs values calculated in this study were consistent or slightly less than the EFs reported for similar coastal seawater ecosystems. A correlation between the EFs of fluoranthene and pyrene indicated a positive significant value (R?=?0.9828, p?<?0.0001, n?=?6). Source analyses using the phenanthrene/anthracene and fluoranthene/pyrene ratios indicated the dominance of petrogenic-derived PAHs. Furthermore, enhanced concentrations of BaP (strong carcinogenicity) in SML and SSW samples, which resulted in higher EFs, could pose serious ecological and human health risks.  相似文献   

19.
Study of harmful algal blooms in a eutrophic pond, Bangladesh   总被引:2,自引:0,他引:2  
The purpose of this research was to analyze the underlying mechanisms and contributing factors related to the seasonal dynamic of harmful algal blooms in a shallow eutrophic pond, Bangladesh during September 2005–July 2006. Two conspicuous events were noted simultaneously throughout the study period: high concentration of phosphate–phosphorus (>3.03; SD 1.29 mg l???1) and permanent cyanobacterial blooms {>3,981.88 × 103 cells l???1 (SD 508.73)}. Cyanobacterial blooms were characterized by three abundance phases, each of which was associated with different ecological processes. High nitrate–nitrogen (>2.35; SD 0.83 mg l???1), for example, was associated with high cyanobacterial abundance, while low nitrate–nitrogen (0.36; SD 0.2 mg l???1) was recorded during moderate abundance phase. Extremely low NO3–N/PO4–P ratio (>3.55, SD 2.31) was recorded, and all blooming taxa were negatively correlated with this ratio. Cyanobacterial blooms were positively correlated with temperature (r?=?0.345) and pH (0.833; p?=?0.05) and negatively correlated with transparency (r?=???0.956; p?=?0.01). Although Anabaena showed similar relationship with water quality parameters as cyanobacteria, the co-dominant Microcystis exhibited negative relationship with temperature (r?=???0.386) and nitrate–nitrogen (r?=???0.172). This was attributed to excessive growth of Anabaena that suppressed Microcystis’s growth. Planktothrix was the third most dominant taxa, while Euglena was regarded as opportunistic.  相似文献   

20.
Exposure to arsenic in arsenic endemic areas is most remarkable environmental health challenges. Although effects of arsenic contamination are well established, reports are unavailable on probable seasonal variation due to changes of food habit depending on winter and summer seasons, especially for endemic regions of Nadia district, West Bengal. Complete 24-h diets, drinking–cooking water, first morning voided urine samples, and diet history were analyzed on 25 volunteers in arsenic endemic Chakdah block of Nadia district, once in summer followed by once in winter from the same participants. Results depicted no seasonal variation of body weight and body mass index. Arsenic concentration of source drinking and cooking water decreased (p?=?0.04) from 26 μg L?1 in summer to 6 μg L?1 in winter season. We recorded a seasonal decrease of water intake in male (3.8 and 2.5 L day ?1) and female (2.6 and 1.2 L day?1) participants from summer to winter. Arsenic intake through drinking water decreased (p?=?0.04) in winter (29 μg day?1) than in summer (100 μg day?1), and urinary arsenic concentration decreased (p?=?0.018) in winter (41 μg L?1) than in summer (69 μg L?1). Dietary arsenic intake remained unchanged (p?=?0.24) over the seasons. Hence, we can infer that human health risk assessment from arsenic needs an insight over temporal scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号