首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
超声波/零价铁降解对硝基苯胺的试验研究   总被引:6,自引:0,他引:6  
对在超声波、零价铁和超声波/零价铁(U/Fe0)等体系中对硝基苯胺的降解规律进行了研究。研究结果表明,对硝基苯胺在超声波作用下,降解规律符合一级反应动力学模型,但超声波对高浓度的对硝基苯胺降解效果较差。在U/Fe0体系中,超声波和零价铁对降解对硝基苯胺具有协同作用,对硝基苯胺降解速率显著提高。降解机理显示,对硝基苯胺在零价铁表面上发生原电池反应,被还原为对苯二胺,在超声波作用下进一步降解。在U/Fe0体系中添加Cu2+,形成Fe/Cu原电池,可进一步促进对硝基苯胺的降解速率,降解效率优于铸铁屑形成的Fe/C原电池。  相似文献   

2.
Park EH  Jung J  Chung HH 《Chemosphere》2006,64(3):432-436
Both the photooxidation of EDTA and the photoreduction of metal ions in metal-EDTA systems were investigated. EDTA oxidation by TiO(2) photocatalysis occurred sequentially as Cu(II)-EDTA>Cu(II)/Fe(III)-EDTA>Fe(III)-EDTA. For Cu(II)-EDTA, EDTA was completely decomposed after only 60min of irradiation. The rate of EDTA decomposition was directly correlated with the initial Cu(II) concentration in the case of a mixed Cu(II)/Fe(III)-EDTA system. The metal ions in a single metal-EDTA complex were removed following significant decomposition of EDTA. For a mixed Cu(II)/Fe(III)-EDTA system, however, no copper was removed whereas almost all of the iron was removed. The iron and copper species deposited on the TiO(2) surface were identified via EPR and XPS as mixed FeO/Fe(3)O(4) and Cu(0)/Cu(2)O, respectively.  相似文献   

3.
Xie L  Shang C 《Chemosphere》2006,64(6):919-930
Bromate reduction by Fe(0) with incorporation of copper or palladium was investigated in batch tests. The incorporation of copper led to an increase in the rate of bromate reduction, while incorporation of palladium did not show any effect on bromate reduction by Fe(0), regardless of the bimetal application techniques (either simultaneous addition of Cu(II) or Pd(IV) into the Fe-BrO3- reaction system or using copper or palladium amended iron for bromate removal). Surface analyses by X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD) techniques indicated that aqueous Cu(II) was reduced and incorporated into the iron surface to form Cu2O and Cu(0). Among these two species, pure Cu(0) is not an active electron donor to the bromate reduction reaction, as shown by there being no reduction from using Cu(0) powders alone and no enhancement by Fe(0) when physically mixed with Cu(0). Although it has been proposed in the literature that the enhancement of adsorption also contributes to the enhancement of chemical reduction, this is not the case here because adsorption decreased when Cu increased. The enhanced bromate reduction rate in the presence of copper observed here is most likely the result of the newly formed active Cu(I). The presence of PdO was evidenced by XPS but yielded no enhancement in bromate reduction. Finally, the Cu2O present on the iron surface because of copper impurities in commercially available iron was found to be involved in the bromate reduction and to accelerate the reduction rate.  相似文献   

4.

Nitrogen-doped titanium dioxide (TiO2) and Fe–N-codoped TiO2 layers on fly ash cenospheres (FAC) as floating photocatalyst were successfully prepared through sol–gel method. Photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet (UV)–Vis diffuse reflectance spectroscopy (DRS), and nitrogen adsorption analyses for Brunauer–Emmett–Teller (BET) specific surface area. Photocatalytic efficiency of the prepared catalyst was evaluated through using the decomposition of Rhodamine B (RhB) as a model compound under visible light irradiation. Photocatalytic activity and kinetics of catalyst under visible light were detected in details from different Fe/Ti mole ratios by detecting photodegradation of RhB. Experimental results show that when the calcination temperature was 550 °C, the dosage of FAC was 3.0 g, and the mole ratio of Fe/Ti was 0.71 %; the synthesized Fe–N-TiO2/FAC photocatalyst presented as anatase phase and that N and Fe ions were doped into TiO2 lattice. The material’s specific surface area was 34.027 m2/g, and UV–Vis diffuse reflectance spectroscopy shows that the edge of the photon absorption has been red shifted up to 400–500 nm. Fe–N-codoped titanium dioxide on FAC had excellent photocatalytic activity during the process of photodegradation of RhB under visible light irradiation.

  相似文献   

5.
The highly reactive iron nanoparticles (NPs) immobilized in nylon membrane were synthesized and characterized, and the reduction of nitrobenzene (NB) in groundwater by the NPs was investigated. Environmental scanning electron microscopy (ESEM) images showed that the NPs distributed homogeneously on the membrane surface without agglomeration. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the NPs immobilized in membrane were mainly composed of Fe-oxides rather than zero-valent iron. Thermogravimetric (TG) analysis suggested that the weight percentage of the immobilized NPs and the oxygen introduced to the reacted sample after 80min reaction were about 18.5% and 13%, respectively. Moreover, Fourier transform infrared (FTIR) analysis further demonstrated the changes on the membrane surface after thermal grafting, NPs immobilizing and reacting for 80min. Using the reactive NPs immobilized in nylon membrane, NB in groundwater was rapidly and quantitatively decreased by 68.9% just in the first 20min, the Fe(2+) associated with the iron NPs immobilized in PEG/nylon66 membrane was mainly responsible for this reduction. The reaction appeared to follow pseudo-first-order kinetics and the rate constants increased upon decreasing the pH value. The samples we prepared exhibited good corrosion resistance for humic acid (HA) but had a short-term performance for NB degradation. More so, the groundwater chemistry had a negative influence on the reactivity of membrane immobilized NPs.  相似文献   

6.
The effect of nitrate on the reduction of TCE by commercial granular iron was investigated in column experiments designed to allow for the in situ monitoring of the iron surface film with Raman spectroscopy. Three column experiments were conducted; one with an influent solution of 100 mg/l nitrate+1.5 mg/l TCE, and two control columns, one saturated directly with 100 mg/l nitrate solution, the other pre-treated with Millipore water prior to the introduction of a 100 mg/l nitrate solution. In the presence of nitrate, TCE adsorbed onto the iron, but there was little TCE reduction to end-products ethene and ethane. The iron used (Connelly, GPM, Chicago) is a product typical of those used in permeable granular iron walls. The material is covered by an air-formed high-temperature oxidation film, consisting of an inner layer of Fe(3)O(4), and an outer, passive layer of Fe(2)O(3). In the control column pre-treated with Millipore water, the passive Fe(2)O(3) layer was removed upon contact with the water in a manner consistent with an autoreduction reaction. In the TCE+nitrate column and the direct nitrate saturation column, nitrate interfered with the removal of the passive layer and maintained conditions such that high valency protective corrosion species, including Fe(2)O(3) and FeOOH, were stable at the iron surface. The lack of TCE reduction is explained by the presence of these species, as they inhibit both mechanisms proposed for TCE reduction by iron, including catalytic hydrogenation, and direct electron transfer.  相似文献   

7.
Field plots were established at a timber treatment site to evaluate remediation of Cu contaminated topsoils with aided phytostabilization. Soil containing 2600 mg kg−1 Cu was amended with a combination of 5 wt% compost and 2 wt% iron grit, and vegetated. Sequential extraction was combined with extended X-ray absorption fine structure (EXAFS) spectroscopy to correlate changes in Cu distribution across five fractions with changes in the predominant Cu compounds two years after treatment in parallel treated and untreated field plots. Exchangeable Cu dominated untreated soil, most likely as Cu(II) species non-specifically bound to natural organic matter. The EXAFS spectroscopic results are consistent with the sequential extraction results, which show a major shift in Cu distribution as a result of soil treatment to the fraction bound to poorly crystalline Fe oxyhydroxides forming binuclear inner-sphere complexes.  相似文献   

8.
利用浸渍-碱性微波法制备载磁粉末活性炭,通过等温吸附实验和动力学吸附实验,研究对比了其与原料活性炭、浸渍载铁活性炭对壬基酚的吸附性能。采用氮气吸附仪、FTIR、XRD、国标(GB/T12496.19-1999)邻菲啰啉分光度法及VSM,分别对3种样品进行了物相结构、表面官能团、铁含量及磁性能的分析,并探讨了吸附机理。结果表明,浸渍-碱性微波法载磁活性炭的总孔容及孔隙率均有较大提高;其吸附等温线符合Freundich方程,吸附动力学过程符合准二级动力学方程与孔道内扩散模型,相关系数R2均大于0.900。原活性炭经一定浓度的铁盐溶液浸渍后,铁含量由2%提高到8%。在碱性、N2气氛条件下微波后,铁系物主要存在形式为零价铁和Fe3O4,制得的载磁活性炭饱和磁化强度为1.12 emu/g。  相似文献   

9.
Chen LH  Huang CC  Lien HL 《Chemosphere》2008,73(5):692-697
Bimetallic iron-aluminum (Fe/Al) particles were synthesized and tested for their reactivity toward carbon tetrachloride using batch reactors and a flow-through column at near neutral pH. Preparation of bimetallic Fe/Al particles was conducted under acidic conditions under which iron was readily deposited onto the aluminum surface. The SEM image showed clusters of iron on the aluminum surface at the measured Fe:Al molar ratio of about 2:3. Results showed that the presence of zero-valent aluminum successfully prevented the formation of a passive layer at the iron surface and maintained the reactivity of iron. The dechlorination of carbon tetrachloride by bimetallic Fe/Al particles produced chloroform (9%), dichloromethane (17%) and methane (38%). Kinetic analysis suggests that bimetallic Fe/Al particles increased the reactivity toward carbon tetrachloride degradation by a factor of 10 compared to zero-valent iron and possessed a comparable reactivity with nano-sized Fe. The effectiveness of bimetallic Fe/Al particles was further confirmed by the continuous flow column study from which an ageing of bimetallic particles was also observed.  相似文献   

10.
Kang WH  Hwang I  Park JY 《Chemosphere》2006,62(2):285-293
This study aims to assess the feasibility of using slag, byproduct from iron and steel making industries, as a new reactive material for dechlorination reactions and to investigate dechlorination chemistries of the systems containing the slag and Fe(II). Initially, screening experiments were conducted to evaluate various systems containing slags with or without Fe(II). A combination of the steel converter slag and Fe(II) showed a potential to be developed as a reactive material to treat chlorinated organics. Further kinetic studies with the steel converter slag/Fe(II) systems revealed that the dechlorination capacity of the slag/Fe(II) system is comparable to that of zero-valent iron and generally higher than the cement/Fe(II) system. The slag/Fe(II) system can substantially dechlorinate trichloroethylene (TCE) in the neutral pH region, although the dechlorination rate was greatest in the pH region between 12 and 13. TCE reductions in the slag/Fe(II) system were observed to occur through reductive beta-elimination pathways that produce primarily acetylene and no chlorinated intermediates such as vinyl chloride. These results demonstrate that the steel converter slag with Fe(II) has sound characteristics for an alternative reactive medium for subsurface remediation.  相似文献   

11.
This study aimed to assess the influence of excess iron on the capacity of accumulation of this heavy metal, mineral composition, and growth of Setaria parviflora and Paspalum urvillei. Seedlings were submitted to 0.009; 1; 2; 4; and 7 mM of Fe-EDTA. In both species there was an increase in the concentration of Fe, Zn, P, and Ca and a decrease in Mn, K, and Mg in the iron plaque. Both species accumulated more iron in roots. In the shoots, S. parviflora showed higher iron content, except at 7 mM. Iron altered the contents of Fe, Cu, K, and Mg in roots, and of Fe, Mn, Zn, N, P, K, Ca, and Mg in shoots. The two species tolerated high iron concentrations and accumulated high content of this element in both shoots and roots. The iron did not reduce their growth. Both species are indicated for studies aiming restoration of iron-contaminated areas.  相似文献   

12.
Novel magnetic carbonaceous bio-char was hydrothermal prepared from microalgae under different loadings of iron and its structures and surface chemistry were characterized with Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and nitrogen adsorption-desorption isotherm (BET). The morphology of bio-char changed from sheet to particle as iron loading increased and its surface area also increased. When 3.0 g of dried microalgae and 6.0 mmol iron salt ((NH4)2SO4·FeSO4·6H2O) were mixed and treated, the obtained bio-char possessing the highest amount of oxygen-containing functional groups resulted in the best adsorption performance on tetracycline (TC). This adsorption process was fitted to Langmuir adsorption isotherm and the maximum adsorption capacity was 95.86 mg/g, which is higher than other bio-char reported. The iron loading contributed to the higher adsorption capacity of bio-char, which may be due to three factors, the high surface area, more hydrogen bonding, and bridging effects of the structural Fe for TC. Our data suggest that bio-char may have more important role in stabilization of pollutants in the environment.  相似文献   

13.
Chemical reaction between nitric oxide (NO) andzero valent iron (ZVI) was studied in a packed-bed column process with high temperatures based on ZVI strong reducing abilities. For six controlled temperatures of 523-773 K and 400 ppm of NO (typical flue gas temperature and concentration), under short empty bed contacttime ([EBCT] 0.0226-0.0679 sec), NO was completely removed for temperature of 573-773 K but not for 523 K. Break-through curves were conducted for the five working temperatures, and the results indicated that NO reductions by ZVI were varied from 2 to 26.7 mg NO/g ZVI. Higher temperature and longer EBCT achieved better NO removal efficiency. X-ray diffraction (XRD) and electron spectroscopy for chemical analysis (ESCA) were conducted to analyze the crystal structure and oxidation state of the reacted ZVI. Three layers of iron species were detected by XRD: ZVI, Fe3O4, and Fe2O3. ZVI was the most prevalent species, and Fe3O4 and Fe2O3 were less from the XRD analysis. By ESCA, the oxidation state on the reacted ZVI surface was determined, and the species was identifled as Fe2O3, which is the most oxidizing species for iron. Therefore, three layers from the ZVI core to the ZVI surface can be identified: ZVI, Fe3O4, and Fe2O3. Combining the results from XRD and ESCA, the mechanisms for ZVI and NO can be proposed as two consecutive reactions from lower oxidation state (ZVI) in the core to higher oxidation state on the iron surface (Fe2O3): 3Fe + 4NO<--(high temperature)-->Fe3O4 + 2N2 (A1), 4Fe3O4 + 2NO<--(high temperature)-->6Fe2O3 + N2* (A2) Because there was only <5% ZVI used to remove NO comparing to theoretical ZVI used based on the proposed stoichiometry, it can be concluded that the heterogeneous reaction only occurred on the ZVI surface instead of on bulk of the ZVI.  相似文献   

14.
MCM-41介孔分子筛的合成及其对铜离子的吸附性能   总被引:1,自引:0,他引:1  
以微硅粉为硅源,CTAB和PEG-6000为模板剂,合成MCM-41介孔分子筛。采用XRD、N2吸附-脱附曲线、FT—IR以及TEM表征了其结构、比表面积、孔径分布及晶体形貌,并且以该样品为吸附剂,对含Cu2+的溶液进行了静态吸附实验。结果表明,以微硅粉为硅源成功合成了具有典型六方排列孔道结构的MCM-41,其比表面积为869.5m。/g,孔容为0.97cm3/g,平均孔径为3.3nm;溶液pH为5—6时,MCM-41对Cu2+的去除效果最好;MCM-41对Cu3+的最大吸附吸附容量36.3mg/g;MCM-41对Cu2+的吸附性能符合Langmuir吸附方程的特征。动力学研究表明,该过程符合准二级动力学模型。  相似文献   

15.
Kinetics of reductive denitrification by nanoscale zero-valent iron   总被引:32,自引:0,他引:32  
Choe S  Chang YY  Hwang KY  Khim J 《Chemosphere》2000,41(8):1307-1311
Zero-valent iron powder (Fe0) has been determined to be potentially useful for the removal of nitrate in the water environment. This research is aimed at subjecting the kinetics of denitrification by nanoscale Fe0 to an analysis of factors affecting the chemical denitrification of nitrate. Nanoscale iron particles with a diameter in the range of 1-100 nm, which are characterized by the large BET specific surface area to mass ratio (31.4 m2/g), removed mostly 50, 100, 200, and 400 mg/l of nitrate within a period of 30 min with little intermediates. Compared with microscale (75-150 microm) Fe0, end product is not ammonia but N2 gas. Kinetics analysis from batch studies revealed that the denitrification reaction with nanoscale Fe0 appeared to be a pseudo first-order with respect to substrate and the observed reaction rate constant (k(obs)) varied with iron content at a relatively low degree of application. The effects of mixing intensity (rpm) on the denitrification rate suggest that the denitrification appears to be coupled with oxidative dissolution of iron through a largely mass transport-limited surface reaction (<40 rpm).  相似文献   

16.
Permeable walls of granular iron are a new technology developed for the treatment of groundwater contaminated with dissolved chlorinated solvents. Degradation ofthe chlorinated solvents involves a charge transfer process in which they are reductively dechlorinated, and the iron is oxidized. The iron used in the walls is an impure commercial material that is covered with a passive layer of Fe2O3, formed as a result of a high-temperature oxidation process used in the production of iron. Understanding the behaviour of this layer upon contact with solution is important, because Fe2O3 inhibits mechanisms involved in contaminant reduction, including electron transfer and catalytic hydrogenation. Using a glass column specially designed to allow for in situ Raman spectroscopic and open circuit potential measurements, the passive layer of Fe2O3 was observed to be largely removed from the commercial product, Connelly iron, upon contact with Millipore water and with a solution of Millipore water containing 1.5 mg/l trichloroethylene (TCE). It has been previously shown that Fe2O3 is removed from iron surfaces upon contact with solution by an autoreduction reaction; however, prior to this work, the reaction has not been shown to occur on the impure commercial iron products used in permeable granular iron walls. The rate of removal was sufficiently rapid such that the initial presence of Fe2O3 at the iron surface would have no consequence with respect to the performance of an in situ wall. Subsequent to the removal of Fe2O3 layer, magnetite and green rust formed at the iron surface as a result of corrosion in both the Millipore water and the solution containing TCE. The formation of these two species, rather than higher valency iron oxides and oxyhydroxides, is significant for the technology. The former can interfere with contaminant degradation because they inhibit electron transfer and catalytic hydrogenation. Magnetite and green rust, in contrast, will not inhibit the mechanisms involved in contaminant reduction, and hence their formation is beneficial to the long-term performance of the iron material.  相似文献   

17.
Novel photo-Fenton catalysts were prepared by immobilizing iron species on commercial bentonite plates via two methods: (1) ion exchange reaction (Fe3+ vs. Na+) by aqueous suspension powder-clay/FeCl3 followed by plate preparation, and (2) forced hydrolysis of Fe(NO3)3 onto a prefabricated clay plate. The last method led to a more photo-active Fe-oxide/bentonite plate. This material allowed, at a non-adjusted initial pH of 5.5 and in the presence of H2O2, the total degradation of resorcinol and 55% mineralization in 80 and 100 min of irradiation, respectively. The reached degradation percentages were correlated to the presence of dissolved iron, demonstrating that in these processes, the homogeneous photo-Fenton reactions were mainly responsible for the resorcinol elimination.Likewise, in slurry system, where clay has normally an increased surface area, there was no increase in activity because of a reduced leached iron probably due to the diminished light penetration in the suspension. Despite the lower surface area, in comparison to that of the slurry, the clay plates have the advantage, as heterogeneous photo-catalysts, that separation of the reaction media after treatment is not needed, and thus, a potential use for batch and continuous reaction systems is proposed.  相似文献   

18.
Cyclic voltammetry and spectral FTIR studies of the influence of activated carbon surface modification on the co-adsorption of metal cation (lead or iron) and phenol from aqueous acidic solution were carried out. The diversity in surface chemical structure was achieved by applying different procedures of inorganic matter removal and by modifying the carbon samples in various ways: heating under vacuum, aminoxidation in an ammonia-oxygen atmosphere, oxidation with concentrated nitric acid. The quantities of adsorbed metal ions (Pb(2+) or Fe(3+)) and phenol from solutions containing cation or phenol separately or in a mixture were determined. The adsorption capacity from acidic aqueous acidic solution depends on the chemical properties of the activated carbon surface (e.g., decrease in phenol adsorption with relative lower basicity of the adsorbent). The electrochemical parameters of electrodes made from the carbon samples were estimated, and some possible electrochemical reactions were determined from voltammograms recorded in acid electrolyte solution containing adsorbed species (separately or as a mixture). Relationships were found between metal ion adsorption and electrochemical behavior of Pb(2+)/Pb(4+) and Fe(3+)/Fe(2+) couples on the one hand, and the presence of phenol in the solutions tested and the influence of surface chemistry of the carbon electrodes on electrochemical processes on the other. The changes in adsorption capacity with respect to the adsorbates used and the changes in FTIR spectra of the carbons as a result of adsorption and/or coupling phenol molecules are discussed.  相似文献   

19.
Batch experiments were conducted with different reaction systems to investigate how the treatment efficiency of integrated microbial-Fe0 processes is affected by the amount of Fe0 added. Abiotic experiments with hexavalent chromium and carbon tetrachloride mixtures corroborated that different pollutants could compete for reactive sites on the iron surface, which would hinder specific degradation rates when the available Fe0 surface area is relatively small (e.g., 11 m(2) l(-1)). In such cases, reductive precipitation of chromium could occlude reactive sites and significantly inhibit removal efficiency. Microbial participation in the cleanup process was also influenced by the amount of Fe0 added. Increasing the Fe0 dose (and thus the available surface area) had a stimulatory effect possibly due to a higher production of cathodic H2, which can be used as electron donor for reductive biotransformation of many pollutants. However, high Fe0 doses had an inhibitory effect due to a corrosion-induced increase in pH beyond the optimum range of the bacteria. This suggest that there may be a system-specific, optimum quantity of Fe0 that satisfies availability requirements to preclude contaminant competition for reactive sites and biological requirements for H2 production while minimizing inhibitory increases in pH. Results also confirmed extensive RDX mineralization in bioaugmented (but not in abiotic) Fe0 systems, and support the notion that permeable reactive iron barriers performance might be enhanced by the participation of some microorganisms.  相似文献   

20.
采用不同液相还原法制备纳米Fe0、Fe/Ni和Fe/Cu粒子,将其与反硝化细菌混合应用于地下水NO3--N去除研究。考察3种体系对NO3--N去除速率的影响,并对其脱氮产物及RNA水平上纳米铁系双金属对反硝化细菌的毒性效应进行了分析和讨论。结果表明,9 d内纳米Fe0体系可完全将NO3--N去除,过程中伴随NO2--N先升高后降低的生成趋势,NH 4+-N生成52%;纳米Fe/Ni体系脱氮速率最快,6 d内可将NO 3--N完全去除,几乎未检测到NO 2--N的生成,而NH 4+-N的转化率高达69%;纳米Fe/Cu体系7 d内可将NO3--N去除完全,NH4+-N的生成率降低,仅39%,但是出现33%NO2--N积累。从反应前后反硝化细菌总RNA浓度变化看,3种纳米粒子对反硝化细菌的毒性大小为纳米Fe/Ni﹥纳米Fe/Cu﹥纳米Fe0。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号