首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
以粉煤灰基沸石为载体制备TiO2/沸石光催化剂,采用SEM和XRD对产物进行表征,并考察其对模似废水中亚甲基蓝(MB)的光催化降解活性及再生后的催化性能.实验结果表明:光催化剂中的TiO2主要为锐钛矿晶型;MB降解过程遵循—级Langmuir-Hinshelwood动力学方程;当光照时间为3h、MB质量浓度为10 mg/L、废水pH为7、TiO2/沸石加入量为1.5 g/L时,MB废水的脱色率可达96.46%;经200 W超声波、450℃热再生处理40 min后,再生催化剂对废水的脱色率为73.04%;再生催化剂重复使用8次后,废水脱色率仍可达43.27%.  相似文献   

2.
Fenton氧化-混凝-SBR工艺处理糠醛废水   总被引:2,自引:2,他引:2  
采用Fenton氧化-混凝-SBR工艺处理糠醛废水.实验结果表明:Fenton氧化-混凝预处理糠醛废水时,在废水中硫酸亚铁和过氧化氢浓度分别为57.60 mmol/L和5.22 mol/L、pH为2~3的条件下,废水处理后COD可达500 mg/L以下;再经SBR工艺处理,水力停留时间为18 h,最终出水COD去除率可达99.67%.  相似文献   

3.
可见光催化剂BiVO_4 降解废水中直接耐酸大红4BS   总被引:4,自引:3,他引:1  
以直接耐酸大红4BS模拟染料废水为目标污染物,研究了BiVO_4对直接耐酸大红4BS(简称4BS)的吸附效果以及废水初始质量浓度、废水pH和BiVO_4的加入量对光催化降解效果的影响.实验结果表明:当废水初始质量浓度为40 mg/L、废水pH为6.38、BiVO_4加入量为1.0 g/L时,4BS的降解率可达98.9%;BiVO_4重复使用5次后4BS的降解率可达80.0%以上;COD的变化趋势说明4BS被催化剂吸附和光催化降解的过程是循序渐进的.  相似文献   

4.
以三聚氰胺为前驱体,经热解—回流法制备了石墨相氮化碳(g-C3N4),采用XRD、FTIR、SEM、EDS、PL等技术对g-C_3N_4进行了表征。研究了g-C_3N_4在UV-H_2O_2体系中对废水中亚甲基蓝(MB)的光降解效果。实验结果表明,UV+g-C_3N_4催化剂+H_2O_2体系能协同降解MB,在初始MB质量浓度为20 mg/L、初始废水p H为5、废水体积为250 mL、g-C_3N_4加入量为0.10 g、H_2O_2浓度为0.4 mmol/L、反应温度为25℃的优化工艺条件下,紫外光照射70 min时MB脱色率达98.32%。g-C_3N_4催化剂具有较好的重复使用性能,使用5次后MB脱色率仍保持在95.10%。  相似文献   

5.
采用活性碳纤维(ACF)活化过一硫酸盐(PMS)深度处理焦化废水生化出水。采用单因素实验考察了PMS浓度、ACF质量浓度和初始pH对焦化废水生化出水中的COD和色度去除效果的影响,并采用响应面法优化了反应条件。实验结果表明,在PMS浓度为18.3 mmol/L、ACF质量浓度为4.2 g/L、初始pH为5.3的条件下,焦化废水生化出水中COD和色度去除率分别为85.3%和92.0%。ACF可有效吸附水中污染物,ACF表面起到催化作用的活性点位是碱性官能团,且经过4次重复使用对焦化废水仍能保持一定的处理能力。三维荧光光谱分析结果表明,ACF-PMS体系可有效去除水中的类富里酸和类腐殖酸物质,并降解大部分芳香蛋白类物质。  相似文献   

6.
在自制电化学反应器中,以甲基橙模拟染料废水为处理对象,采用Box-Behnken Design响应面法研究了影响阴阳极同时作用电化学法处理染料废水的因素及其交互作用。实验得出各因素对废水脱色率影响的大小顺序为:电流密度> Fe3+浓度>Cl-浓度。各因素之间的交互作用对废水脱色率影响的大小顺序为:电流密度和Fe3+浓度>电流密度和Cl-浓度>Fe3+浓度和Cl-浓度。优化结果表明:Fe3+浓度为1.02 mmol/L、Cl-浓度为10.96 mmol/L、电流密度为11.52 mA/cm2时,最佳脱色率为94.67%。阴阳极同时作用电化学法对甲基橙去除效果显著。  相似文献   

7.
铱涂层钛电极电催化氧化降解喹啉   总被引:2,自引:1,他引:1  
采用电催化氧化降解模拟焦化废水中的喹啉,研究了电极种类、废水初始质量浓度、废水pH、极板间距和电流密度对喹啉去除率的影响.实验结果表明,在以铱涂层钛电极为阳极、废水中喹啉初始质量浓度为100 mg/L、废水pH为9、电流密度为20 mA/cm2、极板间距为1 cm、反应时间为720 min时,喹啉去除率达88.1%.并...  相似文献   

8.
采用Fenton试剂氧化—原水调节出水pH法预处理碱性印染废水,考察了n(H2O2):n(Fe2+)、Fenton试剂加入量、反应时间和原水与Fenton试剂氧化反应后出水体积比(配水比)对COD去除率及废水pH的影响.实验结果表明,在原水COD为986 mg/L、原水pH为9.31、Fe2+加入量为12 mmol/L、n(H2O2):n(Fe2+)为2、反应时间为30 min、配水比为2的最佳条件下,COD去除率为26.9%,出水pH为6.60.药剂成本较普通Fenton试剂氧化法减少70%.  相似文献   

9.
以不锈钢板为阴阳主电极,以柱状活性炭为感应粒子电极,构建固定床三维电极反应器,并用其深度处理炼油废水。考察了施加电压、水力停留时间、废水pH和曝气量对COD去除效果的影响。实验结果表明,在施加电压10 V、水力停留时间60 min、废水pH=7.0、曝气量120 L/h的优化工艺条件下,处理后出水的COD=27.1 mg/L,满足"超滤—反渗透"单元对进水COD的要求(COD30.0 mg/L)。  相似文献   

10.
采用UV-Fe2+活化过硫酸盐(PS)处理吡啶废水,考察了影响吡啶和TOC去除率的主要因素,探讨了吡啶的降解机理。实验结果表明,在Fe2+加入量为0.32 mmol/L、PS加入量为5.04 mmol/L、初始pH为7.5、初始吡啶质量浓度为50 mg/L的条件下,光照60 min后吡啶去除率为99.48%,光照120 min后TOC去除率为66.78%;UV-Fe2+活化PS体系中起氧化降解作用的自由基为·OH和SO4-·。光照60 min时,对反应产物进行紫外吸收光谱与GC-MS分析,结果表明,吡啶在UV-Fe2+活化PS体系中被降解为含碳氧双键(C=O)的有机物,吡啶降解过程中主要中间产物有N,N-二甲基甲酰胺、丙二醛和丁酸。  相似文献   

11.
二壬基萘磺酸反胶团萃取模拟废水中的铅   总被引:1,自引:0,他引:1       下载免费PDF全文
以二壬基萘磺酸(DNNSA)反胶团煤油溶液萃取模拟含铅废水中的铅。在萃取前水相中铅离子浓度为3×10-4 mol/L、DNNSA浓度为0.010 mol/L、油水比为1∶20、模拟含铅废水pH为6、萃取温度为303 K、萃取时间为40 min的条件下,萃取后水相中铅离子浓度为0.845×10-4 mol/L,有机相中铅离子浓度为4.517×10-3 mol/L,铅萃取率为71.83%。DNNSA反胶团萃取铅离子萃取容量为1 188.62 mg/g,热力学焓变为2.595 kJ/mol。  相似文献   

12.
以靛蓝为目标污染物,采用稀土元素Pr辅助的类Fenton试剂氧化法处理模拟染料废水。制备了双金属氧化物催化剂Fe2-xPrxO3,考察了催化剂中n(Pr)∶n(Fe)、催化剂加入量、初始靛蓝质量浓度、H2O2加入量、废水pH对废水脱色效果的影响。实验结果表明:Pr在很大程度上提高了类Fenton反应的效率,废水脱色率得到显著提高;在n(Pr)∶n(Fe)=1∶5、初始靛蓝质量浓度为30 mg/L、催化剂加入量为500 mg/L、H2O2加入量为40 mL/L、废水pH为3的最佳工艺条件下,反应50 min时废水脱色率达到92.78%。  相似文献   

13.
采用聚丙烯平板膜组件,利用真空膜蒸馏处理发制品废水。考察了进料温度(45.0~70.0 ℃)、进料流量(60~150 L/h)、透过侧真空度(10.0~85.0 kPa)、废水pH、表面活性剂对膜性能的影响。在冷却水流量60 L/h、进料流量120 L/h、进料温度60.0 ℃、透过侧真空度75.0 kPa、废水pH约1.5的条件下,分别对实际发制品废水和模拟发制品废水进行了36 h的运行测试。实验结果表明:两种废水的平均膜渗透通量分别为32.09 kg/(m2·h)和32.66 kg/(m2·h),截留率分别保持在99.54%和99.83%以上;产水的pH约为6.8,COD和TDS几乎为0,完全满足《污水综合排放标准》(GB 8978—1996)中的二级排放标准。  相似文献   

14.
吴威  龚继来  曾光明 《化工环保》2015,35(4):426-431
采用液相还原法制备氧化石墨烯负载纳米零价铁吸附剂(Fe0/GO),并用于吸附去除溶液中的亚甲基蓝(MB)。考察了溶液p H、吸附温度、吸附时间、初始MB质量浓度对Fe0/GO吸附MB的影响。SEM等表征结果显示:Fe0以球形或短链形负载在GO上,增加了材料的反应活性位点;Fe0/GO的比表面积为158.32 m2/g,等电点为3。实验结果表明:在溶液p H为6、吸附时间5 h、吸附温度25℃的最佳条件下,加入400 mg/L的Fe0/GO,处理初始MB质量浓度为160 mg/L的MB溶液,MB去除率为89.26%,吸附量为125.5 mg/g;Langmuir等温吸附方程和Frenudlich等温吸附方程均能较好地描述Fe0/GO对MB的吸附过程;Fe0/GO对MB的吸附行为遵循准二级动力学方程;计算得出吸附温度为25℃、初始MB质量浓度为160 mg/L时的饱和吸附量为201.2 mg/g,平衡吸附量为124.3 mg/g。  相似文献   

15.
宋扬  汪晓军 《化工环保》2008,28(1):54-58
采用絮凝沉淀-Fenton试剂氧化法处理含高浓度硫酸盐的洗涤剂生产废水(简称废水),考察了各种因素对COD去除率的影响。实验结果表明:根据实际废水的水质情况,选用聚合氯化铝(PAC)为絮凝剂,PAC最佳加入量为0.3g/L,经絮凝处理后COD去除率为42.3%;Fenton试剂氧化的最佳操作条件为:n(H2O2):n(Fe^2+)=0.5、H2O2加入量为7mmol/L、反应时间为2h,不调节废水初始pH,经Fenton试剂氧化处理后COD去除率为70%以上。经絮凝沉淀-Fenton试剂氧化法处理后,废水COD由1950mg/L降至240mg/L,总的COD去除率为87.7%,废水处理效果良好。  相似文献   

16.
以三辛胺为载体,煤油为膜溶剂,NaOH为反萃剂,采用大块液膜法处理模拟含Cr(Ⅵ)废水.考察了Cr(Ⅵ)迁移的影响因素,实验结果表明:在料液相进水Cr(Ⅵ)质量浓度为1043.6 mg/L、料液相进水pH为1.1、反萃相中NaOH质量分数为20%、液膜相体积为100 mL、液膜相中三辛胺体积分数为15%、反应时间为50 min的条件下,料液相出水Cr(Ⅵ)质量浓度为0.5 mg/L;萃取36批废水后Cr(Ⅵ)浓缩比可达94.2%.  相似文献   

17.
采用可见光分解(光解)-氯碱氧化法去除模拟废水中的Fe(CN)63-。考察了光解过程中反应时间、初始Fe(CN)63-质量浓度和初始废水pH对Fe(CN)63-去除效果及表观反应速率常数(k(Fe(CN)63-))的影响,以及光解-氯碱氧化法对Fe(CN)63-模拟废水中总氰化物(TCN)的去除效果。实验结果表明:在初始Fe(CN)63-质量浓度6.7 mg/L、初始废水pH 12、反应时间8.0 h的条件下,Fe(CN)63-的去除率为83%,光解过程符合表观一级动力学模型;在初始Fe(CN)63-质量浓度6.7 mg/L、初始TCN质量浓度4.90 mg/L、初始废水pH 12、反应时间12.0 h的条件下,采用光解-氯碱氧化法可使Fe(CN)63-模拟废水的TCN质量浓度降至0.14 mg/L,低于GB 16171—2012的要求(0.2 mg/L),该过程的限速步骤为Fe(CN)63-的光解破络过程。  相似文献   

18.
采用液膜萃取—酸析沉降—络合萃取组合工艺对有机磷阻燃剂生产废水进行预处理.最佳工艺条件为:液膜萃取时,液膜油相(表面活性剂与煤油的混合液)与内水相(H2SO4溶液)的体积比2∶1、乳化液膜与废水的体积比1∶8、废水pH 13.0,硫酸体积分数10%、煤油中表面活性剂质量浓度30 g/L、液膜萃取时间 15 min;酸析沉降时,废水pH l.0,酸析沉降时间30 min;络合萃取时,络合萃取剂(烷基叔胺N235与煤油的混合液)中烷基叔胺N235体积分数30%,络合萃取剂与废水的体积比1∶4,废水pH l.0,络合萃取时间30 min.在此最佳处理条件下,废水COD总去除率可达93%,吡啶去除率达99.9%以上,总磷去除率可达97%,BOD5/COD提高至0.32,有利于后续生化处理.  相似文献   

19.
分别采用UV-Fenton试剂氧化法、次氯酸钙氧化法和二氧化氯氧化法处理模拟聚合物驱废水,考察了各工艺条件对废水降黏效果的影响。实验结果表明:在初始废水pH为7、反应温度为50℃、反应时间为20 min的条件下,UV-Fenton试剂氧化法适宜的H2O2加入量为1 mmol/L,n(H2O2)∶n(Fe2+)=10,处理后废水降黏率达65.7%;次氯酸钙氧化法适宜的次氯酸钙加入量为500 mg/L,处理后废水降黏率达81.7%;二氧化氯氧化法适宜的二氧化氯加入量为100 mg/L,处理后废水降黏率为40.9%。3种氧化法对模拟聚合物驱废水的降黏率大小顺序为:次氯酸钙氧化法>UV-Fenton试剂氧化法>二氧化氯氧化法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号