共查询到19条相似文献,搜索用时 60 毫秒
1.
微电解催化氧化处理对硝基苯胺系列废水 总被引:16,自引:0,他引:16
从对硝基氯化苯出发可生产对硝基苯胺、2·6 二氧对硝基苯胺第一系列产品 ,这一生产过程产生的废水色度高 ,难降解 ,污染严重。通过大量实验 ,采用专一的金属催化剂进行微电解催化氧化法进行处理 ,不仅工艺简单 ,成本低 ,出水为无色透明 ,达到排放标准 相似文献
2.
3.
二氧化氯/活性炭催化氧化处理对硝基苯甲酸废水影响因素 总被引:2,自引:0,他引:2
以对硝基苯甲酸废水为处理对象,分别考察了活性炭投加量、二氧化氯投加量、pH值及反应时间等因素对二氧化氯/活性炭催化氧化工艺处理对硝基苯甲酸废水的影响.并在最优条件下,通过试验考证了该工艺作为高浓度对硝基苯甲酸废水的预处理手段,在去除废水中COD和提高可生化性(BOD5/COD)方面的综合效果.结果表明,采用ClO2与活性炭组成催化氧化体系,其处理COD为109印mg·L-1,的对硝基苯甲酸废水,效率比单独使用二氧化氯高10%;在废水pH值为4.1时,当活性炭投加量为200 g·L-l、反应时间30 min、二氧化氯投加量为300 mg·L-1,时,废水的COD降至7 100 mg·L-1,去除率达到35%, BOD5浓度提高到1 810 mg·L-1,废水的BOD5/COD值由原来的0.10提高到0.25,明显提高了废水的可生化性.因此,二氧化氯/活性炭催化氧化工艺是预处理高浓度对硝基苯甲酸废水的有效手段. 相似文献
4.
微气泡臭氧催化氧化-生化耦合工艺深度处理煤化工废水 总被引:6,自引:1,他引:6
采用微气泡臭氧催化氧化-生化耦合工艺对煤化工废水生化出水进行深度处理,考察耦合系统处理性能及不同臭氧投加量和进水COD量比值的影响.结果表明,微气泡臭氧催化氧化处理能够有效降解废水中难降解含氮芳香族污染物,去除部分COD并释放氨氮,显著提高废水可生化性,臭氧利用率接近100%,无需进行臭氧尾气处理;同时为生化处理提供充足溶解氧(DO),实现生化处理对COD和氨氮的进一步有效去除,生化处理无需曝气.在系统出水回流比为30%、臭氧投加量和进水COD量之比为0.44 mg·mg~(-1)的运行条件下,耦合系统处理性能较好.微气泡臭氧催化氧化处理对COD去除率为42.5%,臭氧消耗量与COD去除量比值为1.38 mg·mg~(-1),臭氧利用率为98.0%;生化处理对COD去除率为42.3%;耦合系统整体COD去除率为66.7%,最终平均出水COD浓度为91.5 mg·L~(-1),估算整体臭氧消耗量与COD去除量比值为0.68 mg·mg~(-1),具有较优的技术经济性能. 相似文献
5.
6.
采用电解氧化和Fenton技术耦合的电解催化氧化法对毒死蜱废水进行处理,考察了该法对毒死蜱废水的处理效果和出水的生化性能。结果表明:采用H2O2溶液用量逐步增加的方式,经过420 min电解催化氧化反应,废水CODCr仅由初始的7 920 mg/L降至5 880 mg/L,反映出毒死蜱废水的难降解特性。电解氧化单独处理毒死蜱废水时,在初始20 min内CODCr迅速下降,削减量为1 892 mg/L,随后CODCr变化不大;反应至80 min时,随着Fenton氧化反应的加入,废水CODCr开始逐步下降,有机物得到进一步降解。结合电解催化氧化出水的可生物降解CODCr(BCODCr)和废水处理要求(生化出水预期CODCr为500~600 mg/L,满足DB 33/923—2014《生物制药工业污染物排放标准》排放限值),将其分别稀释3和4倍后进行好氧生化试验,反应动力学常数分别为383.4和298.3 min -1,该好氧生化反应过程可能更多受浓度控制而非毒性抑制。电解催化氧化出水稀释3倍后进行21 d水解酸化-好氧连续流试验,出水CODCr为512~673 mg/L,去除率基本保持在60%以上;出水TP浓度后期稳定在20~30 mg/L,去除率在45%左右;出水NH3-N浓度为2.8~5.3 mg/L,去除率可达95%以上。 相似文献
7.
《环境科学与技术》2015,(2)
针对PCB络合废水络合铜浓度高、COD难达标、可生化性差等特点,在研究铜对铁碳微电解和Fenton氧化的催化作用的基础上,采用催化铁内电解-Fenton催化氧化联合自催化氧化还原技术对PCB络合废水进行处理,并通过混凝实验进一步去除废水中污染物。零价铁可置换出络合铜中的铜,单质铜与零价铁可形成Fe-Cu催化还原体系,对Fenton氧化也具有催化作用,可有效提高废水的处理效果。通过单因素实验确定各工艺最佳反应条件,实验结果表明,催化铁内电解最佳工艺条件为:p H=2,反应时间为60 min,铁屑投加量为5 g/L;Fenton催化氧化最佳工艺条件为:p H=3,反应时间为60 min,H2O2投加量为15 m L/L;混凝实验PAM最佳投加量为10 mg/L。最佳工艺条件下废水COD和总铜去除率分别可达到94.5%和98.8%,B/C由0.12提高到0.32,废水可生化性得到显著提高,为后续处理创造了条件。 相似文献
8.
9.
本文详细介绍了在实验室条件下,采用混凝以及过氧化氢光催化法处理制药废水,研究分析了硫酸铁混凝体系以及过氧化氢光催化体系的最佳工艺参数.结果表明:在硫酸铁混凝降解制药废水的实验中,pH是影响混凝的主要因素,混凝剂的加入具有脱稳作用.PAM具有助凝作用.在混凝实验中降解废水的最佳工艺条件为pH值为7,10mg/L的硫酸铁投加量为0.6mL,1mg/L的PAM投加量为2mL,废水COD去除率可达到70%,SS去除率可达到90%.而经过氧化氢光催化处理混凝后的制药废水,最佳工艺条件为:光催化方式选定为曝气,反应温度控制在20℃~30℃间,1%的过氧化氢投加量为9mL,pH值为4,反应时间为3h,废水COD去除率可达到96%. 相似文献
10.
11.
水解酸化—生物接触氧化工艺处理啤酒废水工程实例 总被引:21,自引:2,他引:21
应用以生化法为主体的工艺:水解酸化—生物接触氧化法处理啤酒厂废水,通过治理工程实际运行,结果表明:处理的出水水质稳定、处理效率高。 相似文献
12.
13.
为了高效处理水产养殖废水,采用了生物接触氧化-滴滤(以陶粒为滤料)组合工艺,并对该组合工艺的处理效果进行考察。以生物接触氧化池中组合填料的密度、停留时间以及滴滤的水力负荷作为研究对象,通过对CODMn、氨氮、TN等参数的分析,得到了该组合工艺的处理效果。研究表明:当工艺中组合填料密度(组合填料与废水的体积比)为9.24%,生物接触氧化水力停留时间为0.85 h,滴滤的水力负荷为27.2 m3/(m2·d)时,CODMn、氨氮、TN、TP的去除率可分别高达55.31%、34.31%、57.64%和20.25%。证明采用该组合工艺净化水产养殖废水具有可行性。 相似文献
14.
《环境工程》2016,(Z1)
对比了Fenton试剂、高锰酸钾及次氯酸钠三种氧化方法对含三乙胺废水的处理效果,并重点优化了次氯酸钠氧化方法处理三乙胺废水的实验参数。通过考察实验温度、反应时间、p H值、次氯酸钠浓度及投加方式对废水中三乙胺和TOC的去除效果,结果表明,次氯酸钠氧化方法对三乙胺去除效果明显优于其他两种氧化方法,提高p H值、次氯酸钠投加量、反应时间和反应温度均有利于三乙胺和TOC去除,在次氯酸钠与三乙胺质量浓度比为6∶1时,反应5 min后,三乙胺和TOC的去除率分别可达99.3%和12.1%,反应2h后TOC去除率达到65.6%。次氯酸钠氧化方法是一种低成本、高效率、高选择性去除废水中三乙胺的方法。 相似文献
15.
气浮-生物接触氧化法深度处理再生纸生产废水 总被引:7,自引:0,他引:7
在化学絮凝 气浮方法基础上 ,深度处理再生纸生产废水生物接触氧化法。运行情况表明 :该治理工艺处理效率高 ,中间水回用连续稳定 ,排放废水稳定达标 ,生产废水回用率达 85 %以上 相似文献
16.
通过对脉冲澄清池在综合废水处理中运行效果的跟踪分析,确定出利用脉冲澄清池补充处理生化后废水(悬浮物、COD_(cr)、BOD_5等)的影响程度,为其在综合废水处理工艺中的应用及其局限性,提供了必要的参考依据. 相似文献
17.
18.