首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We inventoried wetland impoundments in the Louisiana, USA, coastal zone from the late 1900s to 1985. Historically, impoundment of wetlands for reclamation resulted in direct wetland loss after levees (dikes) failed and the impounded area was permanently flooded, reverting not to wetland, but to open-water habitat. A current management approach is to surround wetlands by levees and water control structures, a practice termed semi-impoundment marsh management. The purpose of this semi-impoundment is to retard saltwater intrusion and reduce water level fluctuations in an attempt to reduce wetland loss, which is a serious problem in coastal Louisiana. In order to quantify the total impounded area, we used historic data and high-altitude infrared photography to map coastal impoundments. Our goal was to produce a documented inventory of wetlands intentionally impounded by levees in the coastal zone of Louisiana in order to provide a benchmark for further research. We inventoried 370,658 ha within the coastal zone that had been intentionally impounded before 1985. This area is equal to about 30% of the total wetland area in the coastal zone. Of that total area, approximately 12% (43,000 ha) is no longer impounded (i.e., failed impoundments; levees no longer exist or only remnants remain). Of the 328,000 ha still impounded, about 65% (214,000 ha) is developed (agriculture, aquaculture, urban and industrial development, and contained spoil). The remaining 35% (114,000 ha) of impoundments are in an undeveloped state (wetland or openwater habitat). In December 1985, approximately 50% (78,000 ha) of the undeveloped and failed impoundments were open-water habitat. This inventory will allow researchers to monitor future change in land-water ratios that occur within impounded wetlands and thus to assess the utility of coastal wetland management using impoundments.  相似文献   

2.
Loss of Louisiana's coastal wetlands has reached catastrophic proportions. The loss rate is approximately 150 km2/yr (100 acres/day) and is increasing exponentially. Total wetland loss since the turn of the century has been almost 0.5 million ha (1.1 million acres) and represents an area larger than Rhode Island. The physical cause of the problem lies in man's attempts to control the Mississippi River's flooding, while enhancing navigation and extracting minerals. Levee systems and control structures confine sediments that once nourished the wetlands to the river channel. As a consequence, the ultimate sediment deposition is in deep Gulf waters off the Louisiana coast. The lack of sediment input to the interdistributary wetlands results in an accretion deficit. Natural and human-induced subsidence exceeds accretion so that the wetlands sink below sea level and convert to water. The solution is to provide a thin veneer of sediment (approximately 0.6 cm/yr; an average of 1450 g m?2 yr?1) over the coastal marshes and swamps and thus prevent the submergence of vegetation. The sediment source is the Mississippi River system. Calculations show that 9.2% of the river's annual suspended sediment load would be required to sustain the deltaic plain wetlands. It should be distributed during the six high-water months (December–June) through as disaggregated a network as possible. The problem is one of distribution: how can the maximum acres of marsh be nourished with the least cost? At present, the river is managed through federal policy for the benefit of navigation and flood control. A new policy structure, recognizing the new role for the river-sediment distribution, is recommended.  相似文献   

3.
Returning canal spoil banks into canals, or backfilling, is used in Louisiana marshes to mitigate damage caused by dredging for oil and gas extraction. We evaluated 33 canals backfilled through July 1984 to assess the success of habitat restoration. We determined restoration success by examining canal depth, vegetation recolonization, and regraded spoil bank soils after backfilling. Restoration success depended on: marsh type, canal location, canal age, marsh soil characteristics, the presence or absence of a plug at the canal mouth, whether mitigation was on- or off-site, and dredge operator performance.Backfilling reduced median canal depth from 2.4 to 1.1 m, restored marsh vegetation on the backfilled spoil bank, but did not restore emergent marsh vegetation in the canal because of the lack of sufficient spoil material to fill the canal and time. Median percentage of cover of marsh vegetation on the canal spoil banks was 51.6%. Median percentage of cover in the canal was 0.7%. The organic matter and water content of spoil bank soils were restored to values intermediate between spoil bank levels and predredging marsh conditions.The average percentage of cover of marsh vegetation on backfilled spoil banks was highest in intermediate marshes (68.6%) and lowest in fresh (34.7%) and salt marshes (33.9%). Average canal depth was greatest in intermediate marshes (1.50 m) and least in fresh marshes (0.85 m). Canals backfilled in the Chenier Plain of western Louisiana were shallower (average depth = 0.61 m) than in the eastern Deltaic Plain (mean depth range = 1.08 to 1.30 m), probably because of differences in sediment type, lower subsidence rate, and lower tidal exchange in the Chenier Plain. Canals backfilled in marshes with more organic soils were deeper, probably as a result of greater loss of spoil volume caused by oxidation of soil organic matter. Canals ten or more years old at the time of backfilling had shallower depths after backfilling. Depths varied widely among canals backfilled within ten years of dredging. Canal size showed no relationship to canal depth or amount of vegetation reestablished. Plugged canals contained more marsh reestablished in the canal and much greater chance of colonization by submerged aquatic vegetation compared with unplugged canals. Dredge operator skill was important in leveling spoil banks to allow vegetation reestablishment. Wide variation in dredge performance led to differing success of vegetation restoration.Complete reestablishment of the vegetation was not a necessary condition for successful restoration. In addition to providing vegetation reestablishment, backfilling canals resulted in shallow water areas with higher habitat value for benthos, fish, and waterfowl than unfilled canals. Spoil bank removal also may help restore water flow patterns over the marsh surface. Increased backfilling for wetland mitigation and restoration is recommended.  相似文献   

4.
Weirs are low-level dams traditionally used in Louisiana's coastal marshes to improve habitat for ducks and furbearers. Currently, some workers hope that weirs may reduce marsh loss, whereas others fear that weirs may accelerate marsh loss. Parts of Marsh Island, Louisiana, have been weir-managed since 1958 to improve duck and furbearer habitat. Using aerial photographs, marsh loss that occurred between 1957 and 1983 in a 2922-ha weir-managed area was compared to that in a 2365-ha unmanaged area. Marsh loss was 0.38%/yr in the weir-managed area, and 0.35%/yr in the unmanaged area. Because marsh loss in the two areas differed less than 0.19%/yr, it was concluded that weirs did not affect marsh loss. The increase in open water between 1957 and 1983 did not result from the expansion of lakes or bayous. Rather, solid marsh converted to broken marsh, and the amount of vegetation within previously existing broken marsh decreased. Solid marsh farthest from large lakes and bayous, and adjacent to existing broken marsh, seemed more likely to break up. Marsh Island has few canals; therefore, marsh loss resulted primarily from natural processes. Weirs may have different effects under different hydrological conditions; additional studies are needed before generalizations regarding weirs and marsh loss can be made.  相似文献   

5.
Effect of weirs on sediment deposition in Louisiana coastal marshes   总被引:1,自引:0,他引:1  
Sediment deposition both inside and outside of fixed-crest weirs was measured for fresh/intermediate, brackish, and saline marsh areas in coastal Louisiana, USA. Sediment traps, collected on a weekly basis, were used to monitor short-term changes in sediment deposition. Feldspar marker horizons were used to measure cumulative marsh accretion during the 16-week monitoring period. Results show that for most sites less sediment is deposited in marsh behind weirs than at the control sites outside the weirs. Patterns at each site are consistent throughout the 16 monitoring periods. At only one site was no significant difference found. Streamside areas both inside and outside the weirs were found to have higher rates of sediment deposition than backmarsh areas. At both marsh locations, sediment deposition rates were higher outside the weirs than inside. More sediment was deposited in saline marshes than in brackish or fresh/intermediate areas. The vertical accretion data shows that marshes in most areas are accreting sufficiently rapidly to keep pace with local rates of sea-level rise, except for two areas, both of which are inside weirs.  相似文献   

6.
Natural factors and human modifications contribute to the estimated annual loss of 10,200 ha of coastal land in the Mississippi River Deltaic Plain Region of south Louisiana. This paper combines information on regional geology and human-induced habitat alterations to evaluate the relative importance of human and natural factors to marsh loss. Data on marsh area and habitat type for 139 7.5-min quadrangles were calculated from maps based on aerial photographs from 1955/56 and 1978, and data on regional geology obtained from published maps were used to construct multivariate model relating initial marsh area, change in urban and agricultural area, change in canal and spoil area, canal area in 1978, depth of sediment overlying the Prairie terrace, and subdelta age to marsh loss. The model indicated that between 25.0% and 39.0% of the marsh loss that occurred during the 23-year period was related to canal and spoil construction, and between 9.5% and 12.7% was related to urban and agricultural development. These are minimal estimates of loss because they do not include many secondary effects (for example, canal orientation, saltwater intrusion, and eutrophication) that can also result in indirect loss. Depth of sediment, initial marsh area, delta lobe age by 1978 canal and spoil area interaction, and indirect effects not included in the model accounted for remaining marsh loss.  相似文献   

7.
Louisiana's coastal wetlands represent about 41% of the nation's total and are extensively managed for fish, fur, and waterfowl. Marsh management plans (MMPs) are currently used to avoid potential user conflicts and are believed to be a best management practice for specific management goals. In this article, we define MMPs and examine their variety, history, impacts, and future.A MMP is an organized written plan submitted to state and federal permitting agencies for approval and whose purpose is to regulate wetland habitat quantity and quality (control land loss and enhance productivity). MMPs are usually implemented by making structural modifications in the marsh, primarily by using a variety of water control structures in levees to impound or semi-impound managed areas. It appears that MMPs using impoundments are only marginally successful in achieving and often contradict management goals. Although 20% of coastal Louisiana may be in MMPs by the year 2000, conflict resolution of public and private goals is compromised by a surfeit of opinion and dearth of data and experience. Based on interpretation of these results, we believe the next phase of management should include scientific studies of actual impacts, utilization of post-construction monitoring data, inventory of existing MMPs, development of new techniques, and determination of cumulative impacts.  相似文献   

8.
Habitat change in coastal Louisiana from 1955/6 to 1978 was analyzed to determine the influence of geological and man-made changes on landscape patterns within 7.5 min quadrangle maps. Three quantitative analyses were used: principal components anlaysis, multiple regression analysis, and cluster analysis.Regional differences in land loss rates reflect variations in geology and the deltaic growth/decay cycles, man-induced chages in hydrology (principally canal dredging and spoil banking), and land-use changes (principally urbanization and agricultural expansion). The coastal zone is not homogeneous with respect to these variables and the interaction between causal factors leading to wetland loss is therefore locally variable and complex.The relationship between wetland loss, hydrologic changes, and geology can be described with statistically meaningful results, even though these data are insufficient to precisely quantify the relationship. However, these data support the hypothesis that the indirect impacts of man-induced changes (hydrologic and land use) may be as influential as the direct impacts resulting in converting wetlands to open water (canals) or modified (impounded) habitat.Three regions within the Louisiana coastal zone can be defined, based on the potential causal factors used in the analyses. The moderate (mean = 22%) wetland loss rates in region 1 are a result of relatively high canal density and developed area in marshes which overlie sediments of moderate age and depth; local geology acts, in this case, to lessen indirect impacts. On the other hand, wetland loss rates in region 2 are high (mean = 36%), despite fewer man-induced impacts; the potential for increased wetland loss due to both direct and indirect effects of man's activity in these areas is high. Conversely, wetland loss (mean = 20%) in region 3 is apparently least influenced by man's activity in the coastal zone because of sedimentary geology (old, thin sediments), even though these areas have already experienced significant direct habitat alteration and wetland loss.  相似文献   

9.
A computerized geographic information system with site-specific change-detection capabilities was developed to document amounts, rates, locations, and sequences of loss of coastal marsh to open water in Barataria Basin, Louisiana, USA. Land-water interpretations based on 1945, 1956, 1969, and 1980 aerial photographs were used as input, and a modified version of the Earth Resources Laboratory Applications Software developed by the National Aeronautics and Space Administration was used as a spatial data base management system. Analysis of these data sets indicates that rates of marsh loss have increased from 0.36% per year in the 1945–56 period, to 1.03% per year in 1956–69, and to 1.96% per year in 1969–80. The patterns of marsh loss indicate that the combination of processes causing degradation of the marsh surface does not affect all areas uniformly. Marsh loss rates have been highest where freshwater marshes have been subject to saltwater intrusion. The increase in the wetland loss rates corresponds to accelerated rates of subsidence and canal dredging and to a cumulative increase in the area of canals and spoil deposits.  相似文献   

10.
Many coastal resource managers believe estuarine marshes are critically important to estuarine fish and shellfish, not only because of the habitat present for juvenile stages, but also because of the export of detritus and plant nutrients that are consumed in the estuary. Concern has been widely expressed that diking and flooding marshes (impounding) for mosquito control and waterfowl management interferes with these values of marshes. Major changes caused by impoundment include an increase in water level, a decrease in salinity, and a decrease in the exchange of marsh water with estuarine water. Alteration of species composition is dramatic after impoundment. Changes in overall production and transport phenomena, however—and the consequences of these changes— may not be as great in some cases as the concern about these has implied. Although few data are available, a more important concern may be the reduction of access by estuarine fish and shellfish to the abundant foods and cover available in many natural, as well as impounded, marshes. Perhaps even more important is the occasional removal of free access to open water when conditions become unfavorable in impounded marsh that is periodically opened and closed. Collection of comparative data on the estuarine animal use of various configurations of natural and impounded marshes by estuarine animals should lead to improved management of both impounded and unimpounded marshes.  相似文献   

11.
The rationale and outline of an implementation plan for restoring coastal wetlands in Louisiana is presented. The rationale for the plan is based on reversing the consequences of documented cause-and-effect relationships between wetland loss and hydrologic change. The main feature is to modify the extensive interlocking network of dredged spoil deposits, or spoil banks, by reestablishing a more natural water flow at moderate flow velocity (<5 cm/sec). Guidelines for site selection from thousands of potential sites are proposed. Examples of suitable sites are given for intermediate marshes. These sites exhibit rapid deterioration following partial or complete hydrologic impoundment, implying a strong hydrologic, rather than sedimentological, cause of wetland deterioration. We used an exploratory hydrologic model to guide determination of the amount of spoil bank to be removed. The results from an economic model indicated a very effective cost-benefit ratio. Both models and practical experience with other types of restoration plans, in Louisiana and elsewhere, exhibit an economy of scale, wherein larger projects are more cost effective than smaller projects. However, in contrast to these other projects, spoil bank management may be 100 to 1000 times more cost effective and useful in wetland tracts <1000 ha in size. Modest spoil bank management at numerous small wetland sites appears to offer substantial positive attributes compared to alternative and more intensive management at a few larger wetland sites.  相似文献   

12.
Although the coastal ecosystem of Bangladesh contains a highly functional and structurally diverse ecology, this ecology is gradually being degraded. As a consequence, the quality of life of a large section of the coastal community is in economic decline. This poses a daunting challenge to the sectoral coastal management programmes, active since the 1960s, aiming at simultaneously ameliorating people's livelihood and supporting the ecosystem. These programmes have been reasonably successful in managing the ecosystem, but in many cases, the situation has become worse. The limitations of these programmes include the tendency to adopt an exclusionist approach, a narrowly departmentalized administration and weak management. Currently, the integrated coastal zone management (ICZM) approach is espoused as the main strategy. With the adoption of Bangladesh's Coastal Zone Policy of 2005, the foundation for integrated management was laid. The next realistic target will be to bring about changes in culture and mandate among coastal institutions in favour of integrated management.  相似文献   

13.
The assessment of human-induced pressures on the coastal area is essential to target management plans effectively, and moreover is required by the EU Water Framework Directive. A simple and cost-effective assessment of human-induced pressures on the coastal zone is applied using two methodologies: a qualitative visual assessment which uses satellite images; and a quantitative assessment based on governmental census data. These methods are applied to defined areas (23 areas) of four Italian regions: Liguria, Tuscany, Latium and Sardinia. The results show a high agreement (83%) between these two methods, in which only four of the 23 areas are classified differently. These differences may mainly be ascribed to the qualitative or quantitative properties of the methods, and to the different geographical units adopted. These characteristics however provide complementary information, which suggests that the application of both proposed methods confirms reliability and allows fine-tuning of the assessment. The pressure assessment proposed is simple, time and cost-effective, and repeatable over time and space. It therefore can be applied in different contexts to respond to legislative requirements or to target management plans and remedial actions effectively.  相似文献   

14.
The threat of man-induced global change on the nations of the South Asian seas region varies from place to place because of differences in exposure to monsoons and stoms, differences in local tectonics and subsidence, and variations in air and sea climates. Because several nations are involved, some having subsistence budgets, and given the cost of deriving independently a comprehensive response to global change, the similarities and differences between national settings must be identified soon. These comparisons will form the basis for local response strategies: the similarities provide a basis for responses similar to that of other nations and the differences provide for local adaptation. That climate change on the South Asian coastal region will have an impact is certain: its economics, environment, and coastal land uses are dominated to a certain extent by this marine influence. The extent of these impacts, however, is uncertain. Accompanying global change will be changes in sea level, differences in storm climate, and altered precipitation patterns; science cannot define today what pattern these changes will take. Because global change is inevitable—although its magnitude, timing, and geographic distribution are unknown—the South Asian seas region should begin the appropriate research and planning studies to set forth a reasoned response to global change, for implementation when scientific evidence for global change is more quantitative.  相似文献   

15.
The Barataria Basin, Louisiana, USA, is an extensive wetland and coastal estuary system of great economic and intrinsic value. Although high rates of wetland loss along the coastal margin of the Barataria Basin have been well documented, little information exists on whether freshwater wetlands in the upper basin have changed. Our objectives were to quantify land-cover change in the upper basin over 20 years from 1972–1992 and to determine land-cover transition rates among land-cover types. Using 80-m resolution Landsat MSS data from the North American Landscape Characterization (NALC) data archive, we classified images from three time steps (1972, 1985, 1992) into six land-cover types: agriculture, urban, bottomland hardwood forest, swamp forest, freshwater marsh, and open water. Significant changes in land cover occurred within the upper Barataria Basin over the study period. Urban land increased from 8% to 17% of the total upper basin area, primarily due to conversions from agricultural land, and to a lesser degree, bottomland forest. Swamp forest increased from 30% to 41%, associated with conversions from bottomland hardwood forest and freshwater marsh. Overall, bottomland forest decreased 38% and total wetland area increased 21%. Within the upper Barataria, increases in total wetland area may be due to land subsidence. Based on our results, if present trends in the reduction of bottomland forest land cover were to continue, the upper Barataria Basin may have no bottomland hardwood forests left by the year 2025, as it is subjected to multiple stressors both in the higher elevations (from urbanization) and lower elevations (most likely from land subsidence). These results suggest that changes in the upper freshwater portions of coastal estuaries can be large and quite different from patterns observed in the more saline coastal margins.  相似文献   

16.
A dichotomous-choice contingent-valuation survey was conducted in the State of Louisiana (USA) to estimate compensating surplus (CS) and equivalent surplus (ES) welfare measures for the prevention of future coastal wetland losses in Louisiana. Valuations were elicited using both willingness to pay (WTP) and willingness to accept compensation (WTA) payment vehicles. Mean CS (WTP) estimates based on a probit model using a Box-Cox specification on income was $825 per household annually, and mean ES (WTA) was estimated at $4444 per household annually. Regression results indicate that the major factors influencing support for land-loss prevention were income (positive, WTP model only), perceived hurricane protection benefits (positive), environmental and recreation protection (positive), distrust of government (negative), age (positive, WTA model only), and race (positive for whites).  相似文献   

17.
Integrated Measures of Anthropogenic Stress in the U.S. Great Lakes Basin   总被引:1,自引:0,他引:1  
Integrated, quantitative expressions of anthropogenic stress over large geographic regions can be valuable tools in environmental research and management. Despite the fundamental appeal of a regional approach, development of regional stress measures remains one of the most important current challenges in environmental science. Using publicly available, pre-existing spatial datasets, we developed a geographic information system database of 86 variables related to five classes of anthropogenic stress in the U.S. Great Lakes basin: agriculture, atmospheric deposition, human population, land cover, and point source pollution. The original variables were quantified by a variety of data types over a broad range of spatial and classification resolutions. We summarized the original data for 762 watershed-based units that comprise the U.S. portion of the basin and then used principal components analysis to develop overall stress measures within each stress category. We developed a cumulative stress index by combining the first principal component from each of the five stress categories. Maps of the stress measures illustrate strong spatial patterns across the basin, with the greatest amount of stress occurring on the western shore of Lake Michigan, southwest Lake Erie, and southeastern Lake Ontario. We found strong relationships between the stress measures and characteristics of bird communities, fish communities, and water chemistry measurements from the coastal region. The stress measures are taken to represent the major threats to coastal ecosystems in the U.S. Great Lakes. Such regional-scale efforts are critical for understanding relationships between human disturbance and ecosystem response, and can be used to guide environmental decision-making at both regional and local scales.  相似文献   

18.
Water quality and restoration in a coastal subdivision stormwater pond   总被引:1,自引:0,他引:1  
Stormwater ponds are commonly used in residential and commercial areas to control flooding. The accumulation of urban contaminants in stormwater ponds can lead to a number of water quality problems including high nutrient, chemical contaminant, and bacterial levels. This study examined the interaction between land use and coastal pond water quality in a South Carolina residential subdivision pond. Eutrophic levels of chlorophyll and phosphorus were present in all seasons. Harmful cyanobacterial blooms were prevalent during the summer months. Microcystin toxin and fecal coliform bacteria levels were measured that exceeded health and safety standards. Low concentrations of herbicides (atrazine and 2,4-D) were also detected during summer months. Drainage from the stormwater pond may transport contaminants into the adjacent tidal creek and estuary. A survey of residents within the pond's watershed indicated poor pet waste management and frequent use of fertilizers and pesticides as possible contamination sources. Educational and outreach activities were provided to community members to create an awareness of the water quality conditions in the pond. Pond management strategies were then recommended, and selected mitigation actions were implemented. Water quality problems identified in this study have been observed in other coastal stormwater ponds of varying size and salinity, leading this project to serve as a potential model for coastal stormwater pond management.  相似文献   

19.
Surface coal mining operations alter landscapes of the Appalachian Mountains, United States, by replacing bedrock with mine spoil, altering topography, removing native vegetation, and constructing mine soils with hydrologic properties that differ from those of native soils. Research has demonstrated hydrologic effects of mining and reclamation on Appalachian landscapes include increased peakflows at newly mined and reclaimed watersheds in response to strong storm events, increased subsurface void space, and increased base flows. We review these investigations with a focus on identifying changes to hydrologic flow paths caused by surface mining for coal in the Appalachian Mountains. We introduce two conceptual control points that govern hydrologic flow paths on mined lands, including the soil surface that partitions infiltration vs. surface runoff and a potential subsurface zone that partitions subsurface storm flow vs. deeper percolation. Investigations to improve knowledge of hydrologic pathways on reclaimed Appalachian mine sites are needed to identify effects of mining on hydrologic processes, aid development of reclamation methods to reduce hydrologic impacts, and direct environmental mitigation and public policy.  相似文献   

20.
Groundwater serves as the primary drinking water source for over half of the coastal populations of the Southeast and Gulf Coast regions, two of the fastest growing regions in the United States. Increased demand for this resource has exceeded sustainable yields in many areas and induced saltwater intrusion of coastal aquifers. A process associated with coastal groundwater, submarine groundwater discharge (SGD), has been documented as a source of subsurface fluids to coastal ocean environments throughout the Southeast and Gulf Coast regions and is potentially a significant contributor to nearshore water and geochemical budgets (i.e., nutrients, carbon, trace metals) in many coastal regions. The importance of groundwater as a drinking water source for coastal populations and the influences of submarine groundwater discharge to the coastal ocean warrant increased research and management of this resource. This paper highlights findings from recent SGD studies on three hydrogeologically different continental margins (Onslow Bay, NC, southern Florida, and the Louisiana margin), provides background on the common methods of assessing SGD, and suggests a regional management plan for coastal groundwater resources. Suggested strategies call for assessments of SGD in areas of potentially significant discharge, development of new monitoring networks, and the incorporation of a regional coastal groundwater resources council.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号