首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
2019年7-8月在四川省遂宁市实验学校、遂宁中学、金鱼小学、石溪浩4个点位同步开展为期20d的挥发性有机物(VOCs)离线观测,分析了遂宁市VOCs浓度时空分布特征、臭氧生成潜势(OFP)和VOCs主要来源。遂宁市TVOC体积浓度为39.4×10-9,占比较高的组分为OVOCs和烷烃,体积浓度分别为15.6×10-9和13.3×10-9,占比分别为39.5%和33.6%。遂宁中学、金鱼小学、石溪浩24 h平均体积浓度分别为29.8 ×10-9、58.4 ×10-9、30.0×10-9;加密点实验学校的小时平均浓度为22.9×10-9。遂宁市总OFP为166.7 μg/m3,占比最大的为烯烃(33.1%)。实验学校、遂宁中学、金鱼小学、石溪浩OFP浓度分别为101.2、134.4、243.6、122.1 μg/m3。金鱼小学采样点位于工业园区下风向,受工业园区企业排放源影响,VOCs浓度和OFP值均明显高于其他点位。PMF模型源解析结果表明:遂宁市VOCs来源占比最大的为工业排放源,达32%;其次为机动车尾气源、燃烧源,占比均达17%;油气挥发源、天然源、溶剂使用源分别占13%、11%、10%。工业源、机动车尾气来源占比最高的均是金鱼小学,分别为39%、30%;天然源占比较高的是实验学校(13%)和石溪浩(10%)。  相似文献   

2.
2020年7月对兰州市城区大气挥发性有机物进行连续24 h测定,研究其污染特征和臭氧生成潜势等,并进行来源解析。结果表明:兰州超级站点 VOCs的平均质量浓度为99.59 μg/m3,各类挥发性有机物中烷烃占比最大,占总挥发性有机物浓度的33.81%;对挥发性有机物进行臭氧生成潜势分析,排名靠前的物种为甲苯、乙烯、乙酸乙烯酯;利用PMF模型对挥发性有机物进行源解析,结果显示VOCs来源贡献为机动车源(31.30%)、油气挥发或泄漏(24.10%)、溶剂使用源(18.60%)、燃烧和化工工艺源(17.20%)、天然源(8.80%)。建议将控制机动车排放、油气挥发和泄漏、溶剂使用等作为消减城市大气挥发性有机物和臭氧污染的重点。  相似文献   

3.
在石家庄臭氧(O3)污染较重的7月,开展连续10 d(2018年7月6—15日),8次/d的加密监测,获得大气挥发性有机物(VOCs)苏玛罐样品数据及O3在线监测数据,分析了采样期间O3污染特征、VOCs组成及O3生成潜势(OFP)特征,并对VOCs来源进行了研究。结果表明,采样期间O3-3 h浓度最高为243 μg/m3,与相对湿度存在明显的反相关关系,与温度和风速存在良好的正相关关系。VOCs平均体积分数为(75.28±5.81)×10-9,各组分浓度所占比例为OVOCs>烷烃>卤代烃>烯炔烃>芳香烃>其他组分。各类VOCs中,OVOCs对OFP的贡献最大,占64.12%。作为光化学反应的中间产物,OVOCs的一次来源较少,表明二次污染物对石家庄大气O3生成有重要贡献。从具体组分来看,OFP值排名前十的组分以OVOCs为主,其中最高的为甲基丙烯酸甲酯。采样期间,VOCs一次来源主要为汽油车和柴油车尾气排放,贡献率分别为38%与32%;溶剂使用、汽油挥发、生物排放分别占13%、11%、6%。VOCs主要受本地排放影响。  相似文献   

4.
利用在线气相色谱-质谱仪于2021年6月—9月在烟台市开展挥发性有机物(VOCs)在线观测,运用比值法和后向轨迹聚类分析研究VOCs的污染特征及来源。结果表明,观测期间,99种VOCs总体积分数的平均值为13.64×10-9,烷烃占比最高,为3893%;其次是卤代烃和含氧挥发性有机物(OVOCs),占比分别为22.07%和20.09%。VOCs总的臭氧生成潜势(OFP)平均值为160.23μg/m3,烯烃贡献最大,其OFP为53.88μg/m3,占比33.63%。机动车尾气排放是烟台市烷烃、烯烃和芳香烃的主要来源。来自山东半岛内陆方向的气团中烷烃、烯烃和芳香烃的体积分数明显高于其他方向的气团,故须针对上述VOCs开展山东半岛区域范围的联防联控。  相似文献   

5.
2022年春季,受新一轮新冠疫情影响,长三角各城市采取了一系列管控措施,使得大气污染物排放水平降低。对2022年春季(3—5月)南京及长三角地区的六项污染物尤其是臭氧(O3)的变化特征进行了分析,从气象因素和O3前体物方面,同时利用基于观测的模型(OBM)对南京O3污染变化原因进行了研究,并分析了南京挥发性有机物(VOCs)的关键活性组分和来源。结果表明:2022年春季,南京PM2.5、PM10、NO2和CO均值浓度均同比下降,但O3日最大8 h滑动平均质量浓度(O3-8 h)同比上升19.8%,O3-8 h超标时间同比增加9 d;长三角区域O3-8 h同比上升17.9%,O3-8 h超标天数为2021年同期的2.5倍。南京O3浓度上升的原因:一方面是由于不利的气象条件,另一方面是由于南京O3生成处于VOCs控制区,但氮氧化物(NOx)降幅大于VOCs降幅,同时结合O3前体物削减方案的分析结果发现,VOCs和NOx不当的削减比例会导致O3浓度不降反升。南京O3生成的关键VOC活性物种依次为乙醛、丙烯、间/对二甲苯、丙烯醛和乙烯;正定矩阵因子分解(PMF)解析结果显示,机动车尾气是南京城区VOCs的主要来源,其次为液化石油气/天然气使用和石油化工。  相似文献   

6.
利用南京市2022年挥发性有机物(VOCs)在线监测数据,对VOCs污染特征、来源及对臭氧的影响进行了分析研究。结果表明:2022年南京市φ(TVOCs)年均值为25.1×10-9,其中各组分占比为烷烃>含氧挥发性有机物(OVOCs)>氯代烃>烯烃>芳香烃>炔烃。TVOCs及烷烃、烯烃和芳香烃的体积分数季节变化表现为冬季>秋季>春季>夏季,φ(OVOCs)季节变化表现为夏季>秋季>春季>冬季。烷烃、烯烃和炔烃日变化呈“双峰型”特征,芳香烃和氯代烃为“单峰型”。臭氧生成潜势(OFP)贡献总体表现为OVOCs>烯烃>芳香烃>烷烃>氯代烃>炔烃,但冬季烯烃的贡献率最高。南京市臭氧生成的关键VOCs物种为乙醛、乙烯、丙烯、间/对-二甲苯和甲苯。正交矩阵因子分解结果显示,机动车尾气、生物质燃烧和工业生产是南京VOCs的主要来源;对南京臭氧生成贡献最大的VOCs来源为溶剂涂料使用和石化行业。  相似文献   

7.
2019年8—9月,在常州市洛阳小学、市监测站和武澄工业园3个监测站点开展了为期49 d的环境空气57种挥发性有机物(VOCs)离线加密监测,分析其浓度水平及组成特征。结果表明,3个站点VOCs的体积分数分别为29.8×10-9,20.8×10-9和25.3×10-9。3个站点中烷烃的值均值最大,其值占比依次为59.1%,57.2%和51.4%,烷烃中均以乙烷、丙烷和正丁烷值最大。应用臭氧生成潜势(OFP)、OH自由基消耗速率和二次有机气溶胶生成潜势(SOAP)分别对3个站点进行计算,结果显示,各站点芳香烃的数值均最大,OFP占比为67.1%~68.0%,OH自由基消耗速率占比为45.4%~52.0%,SOAP占比为93.3%~94.7%,芳香烃中关键活性组分是甲苯、乙苯和二甲苯等。上风向的洛阳小学与武澄工业园VOCs浓度比市区的市监测站更高,OFP和SOAP也均高于市监测站,表明上风方向的VOCs排放对市区影响较大。  相似文献   

8.
为了解成渝地区中小城市VOCs污染特征及其来源,选取该区域典型代表城市-遂宁市为研究对象,利用2019年不同时间不同功能区106种VOCs离线观测数据,研究了该市VOCs污染水平和时空特征,分析了VOCs主要成分及其对臭氧的影响,并进行了源解析。结果显示:(1)遂宁市大气中VOCs平均体积分数为39.4×10-9,8月的浓度较高,其空间排序为工业区>城郊区≈文教区。(2)OVOCs和烷烃是VOCs主要组分,占比达73.4%,且不受时间和空间限制;工业区不同组分浓度均高于城郊区和文教区,城郊区和文教区的同组分占比相差较小;丙酮和乙烷是VOCs中体积分数最大的物种,占总体积分数的37.8%。(3)VOCs组分对OFP贡献率顺序为烯烃>芳香烃>OVOCs>烷烃>炔烃>卤代烃>有机硫,前4类组分对OFP贡献率达97.6%,烯烃对OFP贡献率不仅每日最大,而且还呈现“城郊区>文教区>工业区”空间分布态势;异戊二烯、乙烯是OFP最大的物种,在不同功能区其OFP均高于其他物种,是遂宁市臭氧防治关注重点。(4)VOCs排放源及...  相似文献   

9.
基于气象和环境空气质量监测数据,分析了江西省干旱对臭氧污染的影响,并结合VOCs在线监测数据,对2022年9月极端干旱下江西省臭氧污染过程特征及污染成因进行分析。结果表明:江西省臭氧污染与气象干旱间存在一定联系,干旱情况下缺少降水对臭氧及其前体物VOCs的湿清除作用,易促使臭氧超标概率随着无雨日数的增加逐步上升。江西省2022年9月出现历史性极端干旱情况,干旱期间江西省11个地市共出现151 d臭氧超标天,NO2常于午夜和早晨出现浓度峰值,从而促进上午臭氧浓度的迅速上升。此外,南昌市林科所站点VOCs在线监测数据也显示:极端干旱期间逐日VOCs体积分数为11.9×10-9~35.5×10-9,较8月明显升高。对OFP贡献前十的物种主要为OVOCs和芳香烃,与8月相比,芳香烃、烯烃和烷烃的OFP略有下降,OVOCs的OFP升高明显,其中乙醛对臭氧的贡献甚至上升143%,前期长时间的无降水可能是乙醛等OVOCs浓度上升的重要原因之一。  相似文献   

10.
为探究威海市秋季挥发性有机物(VOCs)污染特征及来源,于2021年9月10—20日采用手工加密监测法对威海市秋季大气中VOCs进行监测,分析了气象因素对臭氧(O3)及其前体物的影响和VOCs污染特征,并利用正交矩阵因子模型(PMF)方法对VOCs来源进行了研究。结果表明,威海市温度对O3生成影响明显,尤其是高温、低湿、扩散较差气象条件下,有利于O3前体物的反应消耗,促使O3生成及累积。观测期间,威海市秋季φ(VOCs)平均值为47.84×10-9,VOCs中体积分数占比最高的为含氧挥发性有机物(OVOCs),占比为58.0%,其次为烷烃(21.6%)、卤代烃(10.2%)。O3生成潜势(OFP)平均值为393.95μg/m3,对OFP的贡献占比最高的为OVOCs(74.1%),其次为芳香烃(12.6%)、烷烃(7.0%)和烯烃(5.4%)。PMF源解析结果显示,机动车尾气排放源、工艺过程源、船舶尾气排放源和溶剂使用源是威海市秋季VOCs排放主要来源,贡献占比分别为30.4%,23.9%,21.1%,16.5%。控制机动车排放和工艺过程排放是控制威海市秋季VOCs污染的重要途径。  相似文献   

11.
基于2016—2020年台州市区大气污染物监测数据及气象观测资料,分析了台州市区PM2.5和O3的污染特征及受气象因素影响情况,并探究了不同季节下的PM2.5浓度和O3浓度的相关性及相互作用关系。2016—2020年,台州市区PM2.5年均浓度和超标天数呈显著下降趋势,O3-8 h年均浓度和超标天数总体呈上升趋势。PM2.5浓度在冬季最高,且易发生超标;O3浓度在春、夏、秋季均较高,且均会发生超标。通过相关性分析可知:PM2.5浓度与气温、相对湿度、风速、降水量呈负相关,与大气压呈正相关;O3浓度与气温、风速呈正相关,与相对湿度、降水量呈负相关。不同季节下的PM2.5浓度与O3浓度均呈正相关,两者存在协同增长。在春、夏、秋季,二次PM2.5在总PM2.5中的占比随着O3  相似文献   

12.
为了解宜都市PM2.5与O3的污染特征及潜在来源,利用宜都市2020年3月至2022年2月在线监测数据及气象数据,对宜都市PM2.5与O3质量浓度变化特征、气象影响因素及潜在源区进行了分析,结果表明:宜都市PM2.5质量浓度冬高夏低,日变化呈双峰特征,O3质量浓度夏高冬低,日变化呈单峰特征。高湿、静稳的气象条件以及较强偏北风作用下的区域污染传输对PM2.5污染有重要影响,高温以及中湿度对O3污染过程有重要作用。春、夏、秋季偏南方向气流轨迹占主导,且携带较高的污染物浓度,冬季来自湖北东北及西南方向的气流占比较高且携带的PM2.5浓度较高;宜都市PM2.5、O3的潜在源区具有季节性差异,总体来看,主要分布在河南南部、湖北东部及湖南的北部区域。  相似文献   

13.
通过多年在粤港空气监控系统中的O3自动监测实践,阐述了O3标准气浓度传递认证的范例性解决方案,并在O3气体样品输送、O3分析仪器性能维护及在线检查校准用标准气等方面提出了实用的技术方法。  相似文献   

14.
对山东省各市2018—2021年的O3污染特征进行了分析,并对2021年5—9月O3污染较重月份空气质量模型的O3预报结果进行了分析评估。结果表明:山东省2018—2021年O3-8 h第90百分位数(O3-8 h-90per)先升高后降低,O3污染呈现波动变化,污染月主要集中在5—9月,并呈现内陆高、沿海低,中北部高、南部低的空间分布特征。集合预报模式对O3模拟效果最好,预测结果与O3监测值的相关性最大、偏差最小,但较难预测出O3的峰值浓度,易漏报O3重度污染。WRF-Chem、CMAQ、CAMx、NAQPMS对O3的模拟效果比集合预报稍差,CMAQ、CAMx存在系统性偏低的情况,但对优级别的模拟效果明显好于其他模式;WRF-Chem、NAQPMS存在系统性偏高的情况,WRF-Chem能较好地模拟出O3超标日,对中度、重度日的24h级别准确率分别达94.08%、100%,对O3超标预报尤其是中至重度污染的预测预报有重要指导意义。  相似文献   

15.
利用实时监测数据分析2017—2021年邯郸市及周边区县PM2.5和O3污染特征。研究发现:2017—2021年各地区PM2.5年均质量浓度持续降低,轻度及轻度以上污染逐渐减少;2017—2019年O3污染加剧,2020年起O3年均质量浓度逐年下降,污染天不断减少。PM2.5和O3-8 h分别在1月(平均浓度为127.3 μg/m3,平均超标22d)和6月(平均浓度为233.4 μg/m3,平均超标22 d)污染最严重。结合气象参数分析来看,PM2.5与温度、风速和降水量呈显著负相关,与相对湿度呈显著正相关;O3-8h与温度呈显著正相关,而与风速、湿度和降水量的相关性较弱。后向轨迹和潜在源分析表明:邯郸地区PM2.5典型污染月受山西省中部地区污染传输影响最大,O3典型污染月受河南省东部污染传输影响最大。  相似文献   

16.
山东省2015年PM2.5和O3污染时空分布特征   总被引:1,自引:0,他引:1  
利用中国环境监测总站的城市空气质量自动监测数据,分析了2015年山东省细颗粒物(PM2.5)和臭氧(O3)污染的时空分布特征,并初步探讨了其与气象要素的相互关系。研究发现:山东省PM2.5年均质量浓度和年超标天数的空间分布均呈现由东部向西部递增的趋势,半岛地区的浓度最低,其他地区浓度均较高,年均质量浓度最大值出现在德州(101 μg/m3)。各城市PM2.5的月均质量浓度均呈现出季节性变化,冬季最高,夏季最低。O3-8h年均值和O3年超标天数的空间分布与PM2.5不同,半岛地区污染天数最少,其次为南部地区,中部地区和西北部地区污染最为严重并且各区域的城市之间O3污染情况存在较大差异,具有明显的局地性特征。O3质量浓度在春末夏初最高,超标现象主要出现在5—8月。分析各城市PM2.5污染和O3污染的协同性与差异性发现,虽然不同城市之间两者污染情况存在一定差异,但整体上看,山东省大气复合污染特征明显,全年有10个城市的PM2.5和O3同时超标天数都在20 d以上,并且该现象主要发生在夏季。夏季高温低湿的大陆气团控制更有利于O3和PM2.5叠加共存形成复合型污染。温度≥26℃时,O3-8 h与PM2.5日均质量浓度的相关系数为0.63,相对湿度≤60%时,两者相关系数为0.69。此外,当在大陆气团的控制下发生O3污染时,相对湿度的提高更有利于PM2.5浓度的增加。  相似文献   

17.
选取臭氧(O3)污染高发的7月为夏季典型月,采用自动观测设备,从前体物VOCs的浓度水平及O3生成潜势(OFP),前体物、气象因素与O3相关性等多方面研究了衡水市O3污染影响因素,并剖析了一次典型的O3污染过程,以期为衡水市夏季O3污染防治提供科学参考。研究结果表明:衡水市VOCs主要组分浓度占比为烷烃 > 烯烃 > 芳香烃 > 乙炔,主要组分对总OFP的贡献为烯烃 > 芳香烃 > 烷烃 > 乙炔;O3与前体物VOCs、NO2存在负相关性,与温度存在正相关性;相对湿度低于48%时,O3和相对湿度呈负相关性,相对湿度高于48%时,O3和相对湿度呈正相关性;气团中VOCs化学组成稳定性较低,平均VOCs最大增量反应活性(MIR)较低,为4.855gO3/gVOCs;衡水市7月2—4日重度污染过程受本地生成和区域传输叠加影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号