首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
天然气输送管道泄漏事故危害定量分析   总被引:4,自引:1,他引:3  
针对某天然气工程中高压输送管道可能发生的天然气泄漏的爆炸危险性进行分析.利用质量流速模型计算出泄漏流量.根据泄漏流量和天然气的燃烧下限浓度,通过高斯扩散模式定量计算在大气为中性,风速为5 m/s,且位于市区的条件下,天然气在大气中的轴向、径向和切向的扩散距离,从而计算该天然气-空气混合云团的体积.对该体积预混云团的爆炸危害进行评估,计算形成蒸气云爆炸的参数,并应用Mat lab软件计算出该管道泄漏引起蒸气云爆炸事故的个人风险曲线,其结果可为新管线的规划、建设及现有管线的调整提供决策依据.  相似文献   

2.
阐述了LNG槽车的危险特性,分析了LNG槽车发生泄漏后的事故危害过程,得出LNG槽车泄漏危害事故的模式主要有闪火、喷射火、蒸气云爆炸以及沸腾液体扩展蒸汽爆炸;针对不同泄漏口面积和泄漏速度,利用风险评价软件模拟LNG槽车发生泄漏产生喷射火、蒸气云爆炸及沸腾液体扩展蒸汽爆炸3种事故模式的后果,得出各种事故模式的危害半径。模拟结果可为LNG槽车事故预防和应急救援提供参考。  相似文献   

3.
为解决城市燃气管网泄漏蒸气云爆炸事故的风险定量评估问题,提出一种网格化的风险评估方法。首先,综合分析管道故障的影响因素和管道泄漏蒸气云爆炸的后果损失类型,并计算管道的失效概率和管道某一点泄漏导致蒸气云爆炸后在一个网格内的后果损失货币量化值,两者相乘得到该网格中心点的风险值。然后,利用叠加场的原理,将对网格中心点有影响的管段各点风险值耦合叠加,得出各网格中心点的总风险值,进而绘制出评估区域的风险等值线。最后,应用于实例,绘制出某地区燃气管网泄漏蒸气云爆炸的风险等值线,根据风险可接受准则,评价区域划分为特别、重点和一般防护区,并得到相应的防护区域范围。结果表明:网格化的风险评估方法能够准确评估城市燃气管网泄漏蒸气云爆炸事故风险,并使区域风险划分相比传统方法更加精细和形象,有助于提高社会安全防护物资利用率。  相似文献   

4.
LNG储罐组泄漏爆炸事故后果模拟   总被引:3,自引:0,他引:3  
文章以某城镇天然气气化站10个100m3液化天然气(LNG)储罐组为例,利用TNT当量法和超压准则模拟预测单个储罐泄漏后引发蒸气云爆炸(VCE)的事故后果,并采用国际劳工组织(ILO)提出的模型和瞬间火灾作用下的热通量准则模拟预测其余9个储罐连锁发生沸腾液体扩展蒸气爆炸(BLEVE)的事故后果,定量计算爆炸事故的伤害半径范围,为火灾预防和消防抢险救援战斗提供现实的指导意义.  相似文献   

5.
天然气管道泄漏爆炸后果评价模型对比分析   总被引:4,自引:5,他引:4  
天然气管道失效可能导致多种严重后果,爆炸灾害给周围的人员和建筑物造成重大的危害,对其爆炸危害范围的评价进行研究具有重要现实意义。笔者综合分析蒸气云爆炸(VCE)定量评价模型和API pub 581后果评价模型;并以某输气管道为实例对爆炸后果进行了定量模拟评价;得到死亡区域与泄漏时间的关系,确定了其爆炸事故的伤害范围;对两种模型的评价结果进行了对比分析。爆炸后果评价模型的研究与其对比探讨,为今后输气管线的定量风险后果评价模型选取提供参考依据。  相似文献   

6.
蒸气云爆炸模型在原油储罐火灾事故中的应用研究   总被引:1,自引:0,他引:1  
苑静  苗欣 《安全》2011,32(5):9-11,14
本文分析了原油储罐的火灾爆炸事故特点,介绍了蒸气云爆炸模型中热辐射伤害模型以及TNT模型和TNO模型。选取蒸气云爆炸TNT模型以及热辐射伤害模型对10×104m3原油储罐泄漏事故形成的蒸气云爆炸进行后果定量分析,对事故产生的热辐射和冲击波对人员造成的伤害程度进行了对比分析,得出目标到爆炸源距离较近时热辐射对人员造成的伤害较大,目标到爆炸源距离较远时冲击波对人员造成的伤害较大。  相似文献   

7.
工艺流程中氨泄漏事故后果分类研究   总被引:1,自引:0,他引:1  
氨是重要的化工原料和产品,工艺流程中氨主要以氨气、液氨、氨溶液三种状态存在。氨气、液氨、氨溶液理化特性及危险特性不同,可能造成的事故后果类型不同,分别进行三种相态下氨泄漏的事故情景分析。氨气泄漏主要考虑蒸气云爆炸、中毒,液氨泄漏主要考虑沸腾液体扩展蒸气爆炸、蒸气云爆炸、中毒,氨溶液泄漏主要考虑中毒和腐蚀。运用半球模型和高斯模型计算某尿素企业液氨球罐泄漏的危害范围。半球泄漏模型计算方法较简单,但没有考虑氨本身性质及气象条件等因素;高斯模型计算过程较复杂,其计算结果与风速、大气稳定度等条件相关。该两种方法计算结果对预防氨泄漏事故发生和氨泄漏事故预警均具有一定参考意义,如何提高模拟分析的准确度是今后研究工作的重点。  相似文献   

8.
架空天然气管道泄漏事故后果数值模拟研究   总被引:1,自引:1,他引:0  
针对架空天然气管道泄漏引起的火灾爆炸问题,采用事件树分析泄漏扩散引起的事故后果,并在数值模拟中着重分析了模拟数学模型的选择。在三种不同泄漏孔径、两种不同风速、两种不同运行压力条件下分别应用ALHOA软件对事故后果进行数值模拟,结果表明:泄漏孔径、运行压力与危害影响范围成正比关系;在闪火和蒸气云爆炸中,风速与危害影响范围成反比关系,而风速对射流火灾的热辐射范围基本没有影响。  相似文献   

9.
以天津市某化工厂液氨罐泄漏为背景,在氨泄漏后果分析的基础上,用ALOHA(有害大气区域定位)模拟软件对事故影响范围进行模拟,得到可能事故场景下的氨气扩散区域、闪火可燃区域和蒸气云爆炸超压影响区域,以及射火和BLEVE火球热辐射影响.结果表明,液氨爆炸和火灾事故中BLEVE事故造成的危害范围最大,其次是蒸气云、闪火,最后是射火.液氨泄漏扩散事故影响范围可达几千米,应针对不同伤害区域采取不同方式和不同程度的救援措施.  相似文献   

10.
针对TNT当量法在LNG储罐蒸气云爆炸模拟中的应用进行了改进,考虑并分析了使用传统TNT模型时所忽略的LNG液池蒸发过程,通过建立LNG与地面的传热模型得出了LNG液池蒸发速率随时间变化的关系,液池的蒸发速率在最初随时间的增长较快,在增至最大值后与时间的平方根成反比逐渐减小。以3万m~3 LNG储罐连续泄漏20 min为例,根据蒸发速率与时间的关系算出了蒸气云团中的燃料量,再结合蒸气云爆炸模型利用Matlab软件进行了事故后果模拟计算,得出发生蒸气云爆炸时的死亡半径为36.629 5 m,重伤半径为83.557 6 m,轻伤半径124.725 m,财产损失半径为109.017 9 m。相较于无蒸发过程的传统模型,此计算结果更加具有参考意义。  相似文献   

11.
为研究燃料氢气泄漏、爆炸的特性和规律,预防高压储氢系统中氢气泄漏爆炸事故发生,以加氢站为背景,数值仿真45 MPa高压储罐氢气泄漏并引发爆炸事故,分析泄漏爆炸动力学性质以及爆炸波在非均匀氢气浓度中的传播机制。同时,基于泄漏爆炸事故演化的力学机理,开展氢气泄漏爆炸动态风险分析,针对氢气不同泄漏量,建立泄漏扩散形成的气云体积、气云爆炸产生的冲击波与空间x,z方向上危害距离之间关系。研究结果表明:氢气泄漏过程中,气云氢气浓度变化与流场雷诺数具有较好一致性;氢气扩散受到高压储氢罐周围装置影响,流场中氢气浓度分布不均匀;当发生燃烧爆炸事故时,冲击波参数和湍动能变化梯度大;得到复杂布局区域冲击波超压峰值与比例距离之间关系式,其相比于理论方法更精细、计算结果更准确。研究结果可为降低高压储氢系统泄漏爆炸事故后果、采取有效防护措施提供一定依据。  相似文献   

12.
选择具体的液化石油气储配站,分析了该站的危险特性、危险产生的途径及可能造成的后果。在没有任何防护措施的情况下,采用蒸气云爆炸和沸腾液体扩展蒸气云爆炸模型,对该站一个50m3储罐发生泄漏造成的火灾爆炸事故后果进行预测,得出火灾爆炸后的安全距离为大于211.0m。在储配站不能满足此安全距离的基础之上,从防止产生爆炸性气体环境、消除点火源和抑制事故扩大三方面来提出有效的安全措施,降低事故发生的概率及事故造成的损失。其中,站址选在全年最小频率风向的上风侧且周围空旷的地区,罐上设置液位计、压力表、温度计及可燃气体报警器可防止产生爆炸性气体环境;罐及管道设静电接地,法兰用铜线跨接,站内设警示标志可消除点火源;生产区与辅助区间设置隔离墙,罐区周围设置砖混围堤,罐上设安全阀可抑制火灾爆炸事故扩大。  相似文献   

13.
为准确预测输气管道高后果区在发生蒸气云爆炸事故时的超压分布情况,对国内外运用较为广泛的蒸气云爆炸超压预测经验模型和数值模拟方法进行调研,并分别应用其对某输气管道全尺寸泄漏燃爆实验进行超压预测,结合实验数据和输气管道高后果区管理现状进行方法准确性和工程适用性分析。研究结果表明:基于等效TNT假设的Henrych模型、Mills模型和等效TNT当量数值模拟方法均不适合准确预测蒸气云爆炸超压,TNO多能法和混合气体数值模拟方法所预测的结果较为接近实验结果。TNO多能法使用简便且推广性强,但主观性较大,易高估或低估爆炸后果;混合气体数值模拟方法操作繁琐且推广性差,但分析结果精度较高。在对高后果区进行安全管控时,可结合TNO多能法与混合气体数值模拟方法同时对管道工况进行评估,确定TNO多能法的爆源强度等级,继而推广使用TNO多能法。该研究结果可在较大程度上保证评估的准确性并节约成本。  相似文献   

14.
LPG船液货泄漏事故风险评估系统研究   总被引:2,自引:0,他引:2  
通过对液化石油气(LPG)船舶液货舱泄漏事故危险度因素分析,建立液化气液体货物泄漏源强、蒸气释放源强和蒸气扩散计算模型,并制定泄漏事故风险评价流程,基于VB语言编写泄漏事故风险评估系统。利用该系统能够计算得出泄漏事故发生后蒸发气在不同时刻不同区域的蒸发气浓度、爆炸或火灾后对生命财产的伤害半径以及伤害程度等相关参数。对某航行状态下的LPG实船进行模拟分析,结果表明能够对LPG船舶泄漏事故进行有效风险评估,并能对船舶航行安全应急预案的制定和事故后海事鉴定提供一定的技术帮助。  相似文献   

15.
This paper presents an analysis and simulation of an accident involving a liquefied petroleum gas (LPG) truck tanker in Kannur, Kerala, India. During the accident, a truck tanker hit a divider and overturned. A crack in the bottom pipe caused leakage of LPG for about 20 min forming a large vapor cloud, which got ignited, creating a fireball and a boiling liquid expanding vapor explosion (BLEVE) situation in the LPG tank with subsequent fire and explosion. Many fatalities and injuries were reported along with burning of trees, houses, shops, vehicles, etc. In the present study, ALOHA (Area Locations of Hazardous Atmospheres) and PHAST (Process Hazard Analysis Software Tool) software have been used to model and simulate the accident scenario. Modeling and simulation results of the fireball, jet flame radiation and explosion overpressure agree well with the actual loss reported from the site. The effects of the fireball scenario were more significant in comparison to that of the jet fire scenario.  相似文献   

16.
It is very important and necessary to perform quantitative hazard analysis for possible accidental leakage from an underground gas storage cavern in salt rock. An integrated quantitative hazard analysis method for natural gas jet release from salt caverns is presented in this paper, which was constituted by a revised model for gas leakage rate calculation, a consequence analysis and a model of probability assessment for harm. The presented method was validated by comparing the analytical results with the data collected from the real accidents (including the leakage, jet fire, fireball and vapor cloud explosion). It is indicated that the proposed method was more accurate than the TNT equivalence method for vapor cloud explosion and gave more reasonable results when applied to the consequence analysis for the thermal radiation from jet fire and fireball.  相似文献   

17.
为研究LNG加气站槽车直接供液过程泄漏后果严重程度,采用HAZOP辨识槽车供液和储罐供液典型泄漏场景,基于PHAST分析不同泄漏场景下LNG液池半径、蒸汽云扩散距离及积聚时长、爆炸超压和池火热辐射影响范围,定量评价槽车供液可能造成的事故后果扩大程度。结果表明:槽车供液泄漏事故的LNG液池最大半径、蒸汽云最大扩散距离、爆炸超压最大影响半径和池火热辐射最大半径,分别为储罐供液的5.7,1.7,2.3,7.9倍;槽车在无人值守条件下泄漏形成的LNG液池最大半径和蒸汽云积聚时长,分别为有人值守下的1.85,56倍;日供液量较大加气站不宜采用槽车直接为汽车供液模式,而应采用先卸车入罐、再储罐供液的模式;应落实槽车卸车轮班值守制度,并与周边社区建立有效的应急联动方案。  相似文献   

18.
Toxic gas-containing flammable gas leak can lead to poisoning accidents as well as explosion accidents once the ignition source appears. Many attempts have been made to evaluate and mitigate the adverse effects of these accidents. All these efforts are instructive and valuable for risk assessment and risk management towards the poisoning effect and explosion effect. However, these analyses assessed the poisoning effect and explosion effect separately, ignoring that these two kinds of hazard effects may happen simultaneously. Accordingly, an integrated methodology is proposed to evaluate the consequences of toxic gas-containing flammable gas leakage and explosion accident, in which a risk-based concept and the grid-based concept are adopted to combine the effects. The approach is applied to a hypothetical accident scenario concerning an H2S-containing natural gas leakage and explosion accident on an offshore platform. The dispersion behavior and accumulation characteristics of released gas as well as the subsequent vapor cloud explosion (VCE) are modeled by Computational Fluid Dynamics (CFD) code Flame Acceleration Simulator (FLACS). This approach is concise and efficient for practical engineering applications. And it helps to develop safety measures and improve the emergency response plan.  相似文献   

19.
为确定有毒易燃气体道路运输泄漏事故应急救援的应急疏散范围,降低人员伤亡程度,在对泄漏事故及后续次生灾害演化模式分析的基础上,提出了基于多事故模式的应急疏散范围综合确定方法,分析了多事故模式后果预测的相关理论,明确了应急疏散区域综合确定的步骤和流程。以道路运输氨气泄漏事故为例,采用MATLAB软件对不同时间下的中毒和蒸气云爆炸事故伤害范围分别进行了数值模拟研究。结果表明:相较于单一事故模式,基于多事故模式的应急疏散范围综合确定方法更为科学、合理和准确,能为有毒易燃气体道路运输泄漏事故的应急疏散提供更加精确和可靠的决策依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号