首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
两台50MW燃气机组锅炉新装投运一年后水冷壁管频繁发生爆管,爆口位置在高负荷区,爆口形貌呈"开窗式"破裂。通过资料查阅、宏观检查、金相分析、硬度测定、化学成分分析、扫描电镜等方法对水冷壁管进行分析,结果表明,垢下腐蚀和氢腐蚀是导致水冷壁管失效的直接原因,汽水品质差是造成水冷壁频繁爆管的根本原因,长期低负荷运行加剧了水冷壁管爆管的发生。  相似文献   

2.
本文以某电厂600MW超临界W型火焰锅炉为例,针对运行中频繁发生的前墙上部水冷壁鳍片开裂以及水冷壁管变形、爆管问题,从金属材料的膨胀量和许用应力两方面进行研究分析。结果表明:水冷壁超温是引起前墙上部水冷壁鳍片开裂以及水冷壁管变形、爆管的主要原因。  相似文献   

3.
对某厂6号机组锅炉多漏点爆管的水冷壁管样进行了宏观检查与首漏点判断、金相检测及分析、扫描电镜及能谱分析。结果发现,水冷壁泄漏主要原因为焊接原因导致水冷壁管与鳍片焊接处存在过热组织;过热组织的出现,降低了焊接接头的整体力学性能,随着运行时间的延长,该薄弱处发生泄漏。最后提出了防止本锅炉机组再次出现水冷壁爆管的几点建议。  相似文献   

4.
中间集箱作为锅炉机组的重要部件,在锅炉的运行过程中发挥着重要作用.本文就某电厂发生的1起锅炉中隔墙中间集箱管座开裂事件,通过现场检验、结构分析等方法对管座出现裂纹泄漏进行失效分析,发现在集箱最靠外2侧管座根部靠尾部烟道中心侧承受的较大拉应力将管座根部焊口拉裂,同时由于中隔墙集箱下部受热面管壁较上部受热面薄,机械强度不足...  相似文献   

5.
正某厂动力车间5#蒸汽锅炉于1994年8月投入使用,累积运行58367h。锅炉水冷壁管材质为20#钢;规格为φ60mm×3mm;设计压力3.82MPa,实际最高工作压力3.5MPa;锅炉额定蒸汽温度450℃,实际为430℃。2012年3月初锅炉连续发生水冷壁管泄漏,泄漏水冷壁管位于锅炉人孔对面管排中部,泄漏处位于炉膛底部,对该水冷壁管失效原因进行综合分析:1宏观检验送检试样为一段带圆形泄漏孔的水冷壁管残片,圆孔呈喇叭状,圆孔由内表面向外表面凸起,圆孔周围减薄明显。用肉眼观察水冷壁管外表面,发现水冷  相似文献   

6.
某厂3台煤粉锅炉自投用以后频繁发生水冷壁管爆管失效,严重影响了装置的稳定运行。为了解锅炉水冷壁管发生频繁失效的原因,对其中两次典型爆管事故进行了详细的检测和分析,分析手段包括:宏观检查、壁厚测量、化学成分分析、硬度测量、金相分析、扫描电镜观察、能谱分析等。通过分析后认为其中一次爆管事故是由于锅炉水介质pH值偏高,锅炉水中杂质元素在水冷壁管表面形成积垢,导致垢下发生碱液浓缩致垢下碱腐蚀减薄导致爆管;另一次大规模爆管是由于锅炉水中漏入酸性介质后导致锅炉水pH值急剧降低,锅炉水冷壁管发生高温氫损伤导致的。基于这两次大规模爆管的失效分析结果制定了详细的改进措施,使锅炉水冷壁管发生类似失效事件的频率大大降低。  相似文献   

7.
燃煤电站锅炉受热面"四管"泄漏严重影响火力发电厂机组安全稳定运行,受热面"四管"泄漏与基建安装、检修质量、运行操作等密切相关,涉及锅炉、金属、燃料、热工、化学等多个专业。分析"四管"泄漏的具体原因对制定机组运行防范措施、检修项目、检修方案和检修质量标准等有重要指导意义。对某电厂超临界锅炉后墙水冷壁泄漏原因进行分析,从爆管外观、硬度检测、金相检验等多方面对爆管原因进行了分析,针对爆管原因提出了针对性的治理措施,对同类型超临界锅炉"四管"泄露防范和机组安全稳定运行有参考价值。  相似文献   

8.
铢覆层下腐蚀(碱腐蚀和碱应力腐蚀开裂)严重影响烧碱装置降膜蒸发器的安全运行。分析一起降膜蒸发器泄漏案例,发现分离器与管板角焊缝碱应力腐蚀破裂的主要原因是镍覆层焊缝存在贯穿性气孔,认为高浓度碱溶液环境中镍覆层致密性的检查和评价对镍-钢复合板设备安全运行具有重要意义。总结降膜蒸发器管束、管程壳体、焊接接头等部位镍覆层致密性失效导致的腐蚀损伤,提出了重点部位腐蚀检查的技术要求。  相似文献   

9.
针对某高压循环流化床锅炉水冷壁管底部弯管处爆管原因进行失效分析,通过对爆管管段进行宏观检查、化学成分分析、力学性能分析、腐蚀产物分析、金相分析以及运行期间水质化验记录调查,表明锅炉水质p H偏高时在密相区弯管处向火侧内壁发生碱浓缩引起碱腐蚀,弯管处存在的残余应力在强碱性环境下引起碱应力腐蚀,两者共同作用导致了本次爆管的发生。加强水质监控和消应力处理可有效防止碱腐蚀和碱应力腐蚀。  相似文献   

10.
本文针对炼厂内循环流化床锅炉首次出现的水冷壁泄漏,通过对水冷壁管束进行超声波扫描、远场涡流和壁厚检测,找到水冷壁管的缺陷部位。同时对受损管段割管进行化学成分分析、力学性能分析、管道解剖分析、腐蚀产物分析、金相分析、能谱分析以及水质调查,找出造成水冷壁泄漏的主要原因是锅炉水质合格率偏低以及水冷壁管中的汽水蒸发浓缩造成炉水碱度局部过高而引发碱腐蚀,最终导致水冷壁管减薄,强度不足发生泄漏。后续采取水冷壁受损部位局部更换、水冷壁化学清洗措施进行处理,同时加强锅炉水质管理进行预防,锅炉再次开工后运行情况良好。  相似文献   

11.
精馏塔再沸器运行工况并不苛刻,腐蚀程度轻微,工艺介质中亦没有引起环境开裂的典型介质,管板与管束连接角焊缝却频繁开裂泄漏,严重影响到装置的连续生产。本文从管板应力强度方面分析,表明造成角焊缝开裂的原因是由于管板角焊缝厚度偏薄导致的强度不足,在使用过程中,操作压力和温差引起的轴向应力使角焊缝开裂。  相似文献   

12.
某企业自备热电厂在运行中水冷壁发生爆管泄漏,检验人员通过分析确定,该锅炉因水质超标,水冷壁管结垢,造成管子长期过热,导致爆管泄漏。通过更换爆泄管段,保证了企业锅炉的正常运行。  相似文献   

13.
一台换热器换热管束发生了开裂泄漏.采取全面检验的方式,通过宏观检查、化学成分分析、断口微观形貌和能谱分析、金相分析等方法,对换热管开裂原因进行了分析.结果表明:该换热管开裂为氯化物应力腐蚀开裂.壳程介质循环冷却水中CI元素含量是应力腐蚀开裂的主要因素,结构缺陷、敏感的工作温度区间、水中溶解氧和含S杂质导致了应力腐蚀的快速发展.  相似文献   

14.
为探究电厂水冷壁爆管事故的成因,本文对失效水冷壁管进行了宏观分析与理化分析,采用X射线衍射仪(XRD)、光学显微镜(OM)、扫描电子显微镜(SEM)和能谱仪(EDS)对腐蚀产物的晶体结构、腐蚀部位显微组织进行了细致分析,在此基础上对水冷壁管的腐蚀机理进行了推断,得出了该水冷壁管失效的原因是水冷壁内壁发生了局部氧腐蚀,水中的氯离子作为催化剂加快了氧腐蚀速度。  相似文献   

15.
火力发电厂锅炉受热面四管泄漏防范对机组安全稳定运行至关重要,四管泄漏涉及锅炉、金属、化学等多个专业,与运行人员操作水平和检修质量等密切相关。根据锅炉末级过热器爆管,从机组运行前后参数和检查情况,对可能导致爆管的原因进行逐一分析,得出了爆管的直接原因。根据机组目前运行存在的问题,提出和制定了相应的预防措施,对同类型超临界锅炉安全稳定运行有一定参考价值。  相似文献   

16.
项目投产运行后大约一年时间,水煤气废热锅炉、低压锅炉给水加热器、低压废热锅炉的换热管先后数次开裂泄漏。在事故现场勘查的基础上,对换热管进行了涡流探伤、渗透检测、化学成分分析、力学性能试验、金相组织分析、扫描电镜分析、能谱分析,得出事故产生原因:当环境、应力、材料的共同作用时,满足了氯离子应力腐蚀开裂需要的条件,开始产生大量自外表面向内扩展的裂纹,最终造成换热器换热管氯离子应力腐蚀开裂事故。  相似文献   

17.
火力发电厂管件失效泄漏是频发事故,严重影响机组的安全、经济运行。以某发电厂后墙省煤器和低温再热器管子失效泄漏事故为例,通过对失效泄漏的管件进行宏观形貌分析、金相分析和强度分析,论证了泄漏事故的原因是由于腐蚀和钢管固有缺陷导致低温再热器高温段弯管外侧发生泄漏,泄漏的高速流体冲刷、气蚀导致后隔墙省煤器发生泄漏,进而对低温再热器反冲刷,加剧泄漏事故的恶化。最后提出更换失效管件,加强金属监督,尽量扩大防磨防爆检查范围,对易被气流磨损、冲刷部位进行防磨喷涂或加装防磨罩。  相似文献   

18.
某换热器在运行中频繁泄漏,平均每1~2年就需维修或更换。本文结合换热器的结构和工况,对换热管及其腐蚀产物进行了分析讨论,找出了管束泄漏的原因。结果表明:由于工艺参数设计不当,部分换热管管段具备了露点腐蚀的条件,导致介质中的H2S和Cl溶于液态水并在换热管内壁凝聚,进而产生点腐蚀和应力腐蚀开裂而泄漏。  相似文献   

19.
发电厂锅炉水冷壁发生泄漏,利用焊接技术对泄漏点进行带压补漏,不仅可以缩短检修时间,且能减少机组的非计划停运次数。本文对浙能长电1025t/h锅炉水冷壁泄漏带压补漏的生产实践进行了总结。通过对泄漏点特点分析选择合适的带压补漏方法,并制定完善的带压补漏安全措施、技术措施和采取正确的工艺方法,锅炉水冷壁泄漏带压补漏是切实可行的,并能取得显著的经济效益。  相似文献   

20.
某纸业集团循环流化床锅炉水冷壁及水冷屏,在2016年11月9日至2017年1月19日之间,共发生8次(水冷屏6次,炉膛侧墙处水冷壁2次)爆管泄漏事故。停炉后检查水冷壁、水冷屏及水冷壁下联箱,均未发现结垢现象,但部分管段存在较深的内壁腐蚀凹坑(槽),且下联箱存在大量块状脱落物。经分析,造成爆管是炉膛内受热面受热不均,管段局部温差大,对应的管段内部产生汽泡而发生空泡应力腐蚀。本文针对该问题提出了切实可行的整改措施,经过近两年的连续性运行验证,均没有发生过爆管事故。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号