首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The adsorption of Cr(VI) and As(III) by amino-functionalized SBA-15 (NH2-SBA-15) from single and binary systems were investigated in this work. The effects of pH and temperature on the adsorption of NH2-SBA-15 were studied. Adsorption kinetics, isotherm model, and thermodynamics were studied to analyze the experimental data. pH 2 was the optimum condition for the adsorption of Cr(VI) and pH 4 for As(III) adsorption. Increasing temperature had a positive effect on the removal of both Cr(VI) and As(III). The Freundlich isotherm model can depict the adsorption process best. The pseudo-second-order kinetic model fitted well with the kinetic data of Cr(VI) and As(III) in the single-component system. In the binary system, the adsorption of As(III) by NH2-SBA-15 was slightly enhanced with the presence of Cr(VI); however, As(III) had no obvious effect on the removal of Cr(VI). Regeneration experiments indicated that 0.1 mol/L NaHCO3 was an efficient desorbent for the recovery of Cr(VI) and As(III) from NH2-SBA-15; the desorption rates for Cr(VI) and As(III) were 91.6 and 33.59 %, respectively. After five recycling cycles, the removal rates were 88 and 7 % for Cr(VI) and As(III) adsorption by NH2-SBA-15, respectively.  相似文献   

2.
A comparative study on metal sorption by brown seaweed   总被引:7,自引:0,他引:7  
Tsui MT  Cheung KC  Tam NF  Wong MH 《Chemosphere》2006,65(1):51-57
This study compared the sorption of Ag, Cd, Co, Cd, Mn, Ni, Pb and Zn by a Ca-treated Sargassum biomass at pH 5.0, under low and high ionic strength (IS) conditions. The sorption isotherms of As [As(V)] and Cr [Cr(III) and Cr(VI)] were also determined at low IS. The isotherm data for the eight cationic metals and Cr(III) were well fitted by Langmuir equations. Generally, the maximum metal uptake (Umax) followed: Cr(III) > Pb approximately Cu > Ag approximately Zn approximately Cd > Ni approximately Mn approximately Co > Cr(VI) > As(V) at low IS and Pb > Cu > Co > Mn approximately Cd > Zn approximately Ag > Ni at high IS. As(V) did not bind to the seaweed at pH 5.0. The results indicated that sorption of Pb was not affected by the increasing IS, though the percentage of free Pb ions in the water was greatly reduced as predicted by the speciation model. High IS lowered Umax by 10-36% (except Co and Pb), and lowered the affinity constant of the metal by 33-91% for all cationic metals, as compared to low IS. Moreover, the removal efficiency of the cationic metals and Cr decreased exponentially with initial metal concentrations and was lower at high IS. Ion-exchange was the mechanism responsible for the cationic metal sorption onto the seaweed, and Na ion interfered with the cationic metal binding through electrostatic interaction. In conclusion, this study showed the differential binding capacity of the Sargassm biomass for different metals and oxidation states and the differential effects of IS. According to the present results, Sargassum may be considered a good biosorbent for cationic metals (especially Pb) in both low and high-salt containing wastewater.  相似文献   

3.
In this work Paspalum notatum root material was used to elucidate the influence of acid leaching pre-treatment and of sorption medium on metal adsorption. Ground P. notatum root was leached with 0.14M HNO(3). Leached root material (LRM) and non-leached root material (NLRM) were employed to flow sorption of Ni(II), Cu(II), Al(III) and Fe(III) in 0.5M CH(3)COONH(4) medium at pH 6.5. For LRM the sorption was also studied in 0.5M KNO(3) medium. The acid pre-treatment increased the sorption capacity (SC) for all ions studied. For the KNO(3) medium, Cu(II) and Fe(III) sorption was higher than in CH(3)COONH(4) and the type of the Ni(II) isotherm's model changed. The Freundlich model was the most representative isotherm model to describe metallic ions sorption. The (1)H NMR spectra showed differences between LRM and NLRM and the acid-basic potentiometric titration elucidated that acid-leaching procedure affected the root material sorption sites once only two predominant sorption sites were found for LRM (phenolic and amine, both able cations sorption) and five sorption sites (two carboxylic, amine and two phenolic) were founded for NLRM.  相似文献   

4.

Purpose

Heavy metals are toxic pollutants released into the environment as a result of different industrial activities. Biosorption of heavy metals from aqueous solutions is a new technology for the treatment of industrial wastewater. The aim of the present research is to highlight the basic biosorption theory to heavy metal removal.

Materials and methods

Heterogeneous cultures mostly dried anaerobic bacteria, yeast (fungi), and protozoa were used as low-cost material to remove metallic cations Pb(II), Cr(III), and Cd(II) from synthetic wastewater. Competitive biosorption of these metals was studied.

Results

The main biosorption mechanisms were complexation and physical adsorption onto natural active functional groups. It is observed that biosorption of these metals was a surface process. The main functional groups involved in these processes were hydroxyl (–OH) and carboxylic groups (C=O) with 37, 52, and 31 and 21, 14, and 34 % removal of Pb(II), Cr(III), and Cd(II), respectively. Langmuir was the best model for a single system. While extended Langmuir was the best model for binary and ternary metal systems. The maximum uptake capacities were 54.92, 34.78, and 29.99 mg/g and pore diffusion coefficients were 7.23, 3.15, and 2.76?×?10?11 m2/s for Pb(II), Cr(III), and Cd(II), respectively. Optimum pH was found to be 4. Pseudo-second-order was the best model to predict the kinetic process. Biosorption process was exothermic and physical in nature.

Conclusions

Pb(II) offers the strongest component that is able to displace Cr(III) and Cd(II) from their sites, while Cd(II) ions are the weakest adsorbed component.  相似文献   

5.
BACKGROUND, AIMS AND SCOPE: Hexavalent chromium [Cr(VI)] cannot react with either carbonate or hydroxide to form chromium precipitates. However, by using a precipitation technology to treat plating wastewater containing Cr(VI), Cu(II), Ni(II) and Zn(II), approximately 78% of Cr(VI) (initial 60 mg/L) was co-removed with the precipitation of Cu(II), Ni(II) and Zn(II) (each 150 mg/L) by dosing with Na2CO3 (Sun 2003). Direct precipitation by forming Cu(II)-Cr(VI) precipitates followed by adsorption of Cr(VI) onto freshly formed Cu-precipitates was subsequently found to be the main mechanism(s) involved in Cr(VI) co-removal with Cu(II) precipitation by dosing Na2CO3 stepwise to various pH values (Sun et al. 2003). This study was. carried out to further characterize the formation of primary precipitates during the early stages of copper precipitation and simultaneous removal of Cr(VI) with Cu(II). METHODS: Test metal-solutions were prepared with industrial grade chemicals: CuCl2 x 2H2O, Na2SO4 and K2Cr2207. NaCO3 was added drop-wise to synthetic metal-solution to progressively increase pH. For each pH increment, removal of soluble metals was detected by atomic absorption spectrophotometer (AAS) and surface morphology of precipitates was analyzed by scanning electron microscope (SEM). To further characterize the formation of primary precipitates, a series of MINEQL+ thermodynamic calculations/analyses and equilibrium calculations/ analyses were conducted. RESULTS AND DISCUSSION: MINEQL+ thermodynamic calculation indicated that, for a system containing 150 mg/L Cu(II) and 60 mg/L Cr(VI) with gradual Na2CO3 dosing, if any precipitates can be formed at pH 5.0 or lower, it should be in the form of CuCrO4. Comparison tests using systems containing the same equivalent of Cu(II) plus Cr(VI) and Cu(II) plus SO4(2-) showed that the precipitation occurred at a pH of around 5.0 in the Cu(II)-Cr(VI) system and around 6.0 in the Cu(II)-SO4(2-) system. The discrepancy of the precipitation was indeed caused by the formation of Cu-Cr precipitates. The initiation of copper removal at pH around 5.0 for the Cu-Cr co-removal test was not attributable to the formation of Cu-CO3 precipitates, instead, it was most likely through the formation of insoluble Cu-Cr precipitates, such as CuCrO4 and CuCrO4 x 2Cu(OH)2. Experimental tests, equilibrium calculations, MINEQL+ thermodynamic calculations and surface morphologies for systems using higher concentrations of Cu(II) and Cr(VI) further verified the most probable composition of primary precipitates is copper-chromate. CONCLUSION: In the Cu-Cr co-removal test with Na2O3 dosing to increase pH and induce metal precipitation, copper-chromate precipitates are the primary precipitates produced and contribute to the initial simultaneous removal of copper and chromium.  相似文献   

6.
This paper explored biochar modification to enhance biochar’s ability to adsorb hexavalent chromium from aqueous solution. The ramie stem biomass was pyrolyzed and then treated by β-cyclodextrin/poly(L-glutamic acid) which contained plentiful functional groups. The pristine and modified biochar were characterized by FTIR, X-ray photoelectron spectroscopy, specific surface area, and zeta potential measurement. Results indicated that the β-cyclodextrin/poly(L-glutamic acid) was successfully bound to the biochar surface. Batch experiments were conducted to investigate the kinetics, isotherm, thermodynamics, and adsorption/desorption of Cr(VI). Adsorption capacities of CGA-biochar were significantly higher than that of the untreated biochar, and its maximum adsorption capacity could reach up to 197.21 mg/g at pH 2.0. Results also illustrated that sorption performance depended on initial solution pH; in addition, acidic condition was beneficial to the Cr(VI) uptake. Furthermore, the Cr(VI) uptake was significantly affected by the ion strength and cation species. This study demonstrated that CGA-biochar could be a potential adsorbent for Cr(VI) pollution control.  相似文献   

7.
Goh KH  Lim TT 《Chemosphere》2004,55(6):849-859
Factors that can affect As and Se adsorption by soils influence the bioavailability and mobility of these elements in the subsurface. This research attempted to compare the adsorption capacities of As(III), As(V), Se(IV), and Se(VI) on a tropical soil commonly found in Singapore in a single-species system. The effect of reaction time, pH, and competitive anions at different concentrations on the adsorption of both As and Se species were investigated. The As and Se adsorption isotherm were also obtained under different background electrolytes. The batch adsorption experiments showed that the sequence of the As and Se adsorption capacities in the soil was As(V) > Se(IV) > As(III) > Se(VI). The adsorption kinetics could be best described by the Elovich equation. The adsorption of As(V), Se(IV), and Se(VI) appeared to be influenced by the variable pH-dependent charges developed on the soil particle surfaces. Phosphate had more profound effect than SO4(2-) on As and Se adsorption in the soil. The competition between PO4(3-) and As or Se oxyanions on adsorption sites was presumably due to the formation of surface complexes and the surface accumulation or precipitation involving PO4(3-). The thermodynamic adsorption data for As(V) and Se(IV) adsorption followed the Langmuir equation, while the As(III) and Se(VI) adsorption data appeared to be best-represented by the Freundlich equation.  相似文献   

8.
Natural clinoptilolite can be used as an ion exchanger for removal of heavy metals and treatment of environmental pollution because of its desirable characteristics of high ion exchange selectivity and resistance to different media. In this work, the potential of natural clinoptilolite from G?rdes mines (West Anatolia, Turkey) for the uptake of lead(II), nickel(II), copper(II), and zinc(II), from their single and mixed ion solutions, was evaluated using the batch method. The mineralogical and chemical properties of the sorption material were carried out by X-ray diffraction, X-ray fluoremetry, scanning electron microscopy, and wet analysis. Contact time, initial solution pH, solid-to-liquid ratio, and initial metal cation concentration were determined as single ion sorption parameters. The silicon/aluminum ratio and the theoretical and equivalent exchange capacities, both in single and mixed solutions, were established. Corresponding adsorption constants and distribution coefficients have been found.  相似文献   

9.
Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH?>?12 and high electrical conductivities (between 16.01 and 27.27 dS?m?1), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS?m?1. X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6 %), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94 %, As(V) >96 % and Cr(VI) between 11 and 30 % for shell ash; Hg(II) >98 %, As(V) >88 % and Cr(VI) between 30 and 88 % for the waste mixture. Hg and As desorption was <5 % for both shell ash and the waste mixture, while Cr desorption was between 92 and 45 % for shell ash, and between 19 and 0 % for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.  相似文献   

10.
Sorption of Cr(VI) was carried out from dilute solutions using live and pretreated biomass in a batch mode. Effects of agitation time, adsorbent dosage and pH were examined. The autoclaved biomass that showed maximum adsorption capacity (Q(0)=0.335 mg g(-1)) was used as an adsorbent in column studies. The optimized flow rate of 2.5 ml min(-1) and bed height 10 cm were used to determine the effect of metal ion concentration on removal of Cr(VI). Applying the BDST model to calculate the adsorption capacity (N(0)) of column, which showed 4.56 x 10(-5), 7.28 x 10(-5), 6.89 x 10(-5), 3.07 x 10(-5), 2.80 x 10(-5)mg g(-1) for 4, 8, 12, 16 and 20 mg dm(-3) of Cr(VI), respectively. Batch sorption proved to be more efficient than the column sorption and hence batch sorption was used to remove Cr(VI) from a textile dyeing industry wastewater. The phytotoxic effect of treated and untreated wastewater was studied against Zea mays. Toxicity was reduced by 50% in the treated effluent.  相似文献   

11.

Equilibrium sorption studies of anionic species of arsenite, As(III) ions and arsenate As(V) ions onto two biosorbents, namely, chitosan and nanochitosan, have been investigated and compared. The results and trends in the sorption behavior are novel, and we have observed during the sorption process of the As(III) and As(V) on chitosan, a slow process of desorption occurred after an initial maximum adsorption capacity was achieved, before reaching a final but lower equilibrium adsorption capacity. The same desorption trend, however, is not observed on nanochitosan. The gradual desorption of As(III) and As(V) in the equilibrium sorption on chitosan is attributed to the different fractions of the dissociated forms of arsenic on the adsorbent surface and in solution and the extent of protonation of chitosan with the changing of solution pH during sorption. The change of solution pH during the sorption of arsenite ions on chitosan was also influenced by the interaction between the buffering effect of the arsenite species in the aqueous medium and the physical properties of chitosan. The final equilibrium adsorption capacity of chitosan for As(III) and As(V) was found to be around 500 and 8000 μg/g, respectively, whereas the capacities on nanochitosan are 6100 and 13,000 μg/g, respectively.

  相似文献   

12.
Murphy V  Hughes H  McLoughlin P 《Chemosphere》2008,70(6):1128-1134
Dried biomass of the macroalgae Fucus vesiculosus and Fucus spiralis (brown), Ulva spp. (comprising Ulva linza, Ulva compressa and Ulva intestinalis) and Ulva lactuca (green), Palmaria palmata and Polysiphonia lanosa (red) were studied in terms of their chromium biosorption performance. Metal sorption was highly pH dependent with maximum Cr(III) and Cr(VI) sorption occurring at pH 4.5 and pH 2, respectively. Extended equilibrium times were required for Cr(VI) binding over Cr(III) binding (180 and 120min, respectively) thus indicating possible disparities in binding mechanism between chromium oxidation states. The red seaweed P. palmata revealed the highest removal efficiency for both Cr(III) and Cr(VI) at low initial concentrations. However, at high initial metal concentrations F. vesiculosus had the greatest removal efficiency for Cr(III) and performed almost identically to P. lanosa in terms of Cr(VI) removal. The Langmuir Isotherm mathematically described chromium binding to the seaweeds where F. vesiculosus had the largest q(max) for Cr(III) sorption (1.21mmol g(-1)) and P. lanosa had the largest Cr(VI) uptake (0.88mmol g(-1)). P. palmata had the highest affinity for both Cr(III) and Cr(VI) binding with b values of 4.94mM(-1) and 8.64mM(-1), respectively. Fourier transform infrared analysis revealed interactions of amino, carboxyl, sulphonate and hydroxyl groups in chromium binding to Ulva spp. The remaining seaweeds showed involvement of these groups to varying degrees as well as ether group participation in the brown seaweeds and for Cr(VI) binding to the red seaweeds.  相似文献   

13.
表面活性剂改性4A分子筛对Cr(VI)的吸附行为   总被引:1,自引:0,他引:1  
采用浸渍法对4A分子筛进行表面改性,通过引入阳离子表面活性剂,使4A分子筛表面附着季铵型阳离子,并与反离子Br-形成"阴离子交换膜",从而促使更多的Cr(VI)阴离子通过离子交换吸附到改性4A分子筛上,通过X-射线衍射(XRD)和傅里叶变换红外光谱(FTIR)对样品的物相结构和组成进行表征分析。研究表明,表面活性剂的类型和疏水碳氢链结构会影响4A分子筛的吸附能力,十八烷基三甲基溴化铵(OTAB)碳氢链长,在分子筛表面形成的双分子层密,对Cr(VI)的吸附量最大。采用准一级、准二级、Elovich和Bangham动力学模型对六价铬的吸附数据进行拟合,其中准一级动力学方程最符合十八烷基三甲基溴化铵改性分子筛的吸附行为。同时,分别从Langmuir和Redlich-Peterson等温吸附模型获得六价铬的最大吸附量为13.98 mg/g,且改性分子筛以均一表面吸附为主。  相似文献   

14.
Use of waste iron metal for removal of Cr(VI) from water   总被引:6,自引:0,他引:6  
Lee T  Lim H  Lee Y  Park JW 《Chemosphere》2003,53(5):479-485
Cr(VI) removal from water was evaluated using waste iron particles in batch experimental mode. The reaction rates were inversely proportional to the initial Cr(VI) concentrations, and the reaction rates of Cr(VI) removal with the waste iron metal were faster than those with Peerless iron, a commercial zero-valent iron. The loss in iron reactivity due to the oxidation, from Fe(0) to Fe(II), ultimately to Fe(III), could be recovered by adding iron-reducing consortium (IRC) to the oxidized iron. Bacterial reduction of Cr(VI) also helped to decrease the aqueous concentration of Cr(VI), but the reduction of oxidized iron by IRC and the consequent reduction of Cr(VI) to Cr(III) by the reduced iron was more significant. Thus, reusing waste iron metal for Cr(VI) removal can reduce the cost of reactive media. Furthermore, the addition of IRC to the waste iron metal can accelerate the removal rate of Cr(VI), and can recover the reactivity of irons which were oxidized by Cr(VI).  相似文献   

15.
Abstract

Adsorption, desorption, potential and selective distribution of Cu, Zn, Cd, Pb and Ni were investigated in three typical soils of Japan under flooded condition.

The results indicate that the sorption of all heavy metals was linear upto the maximum concentration (500 μg/g soil) employed in the present studies in all the soils. The magnitude of sorption in general was in the order of Pb > Cu > Zn > Cd > Ni. The adsorption coefficients showed wide variations among different soils as well as metal ions. The hysteresis of sorption and desorption by KNO3 was well pronounced for both the metal ions and the soils. The desorption rate was greater than the fixation rate indicating the predominance of the chemosorption over physical processes. The major portion of sorbed metals were retained in the unextractable form, which over all accounted for more than 50% of the sorbed metals.  相似文献   

16.
Fe(III)/Cr(III) hydroxide, a waste material from the fertilizer industry, has been used for the adsorption of Cr(VI) from aqueous solution, over a range of initial metal ion concentrations (5-30 mg litre(-1)), agitation times (1-180 min), adsorbent dosages (100-1200 mg per 50 ml), temperatures (24, 29 and 38 degrees C) and pH values (4.5-10). The adsorption of Cr(VI) increased with the initial concentration of Cr(VI) and with temperature. The process of uptake follows both the Langmuir and the Freundlich isotherm models. The applicability of Lagergren and empirical kinetic models has also been investigated. Almost quantitative removal of Cr(VI) at 10 mg litre(-1) in a 50-ml solution by 500 mg of adsorbent was found at an equilibrium pH of 5.6. The efficiency of chromium removal was also tested using wastewater from the chromium plating industry.  相似文献   

17.

The surface group characteristics of mango cultivar peels and seeds were evaluated by infrared spectra, PZC, and functional group composition. The adsorption/reduction of chromium (VI) in aqueous solutions was investigated by varying pH, contact time, initial Cr(VI) concentration, and adsorbent amount. The results show that both peel and seed powders of the mango cultivars showed significant adsorption/reduction capacity for Cr(VI) and that the desorption process obeys pseudo-second-order kinetics. Optimal adsorption occurred at pH 1.0, using a Cr(VI) concentration of 100 mg/L. On average, at pH 1.0, and a concentration of 3 g/L, the maximum adsorption/reduction capacity of Cr(VI) was 83% (peels 76%, seeds 90%). Of the mango powders tested, the most efficient were Tommy seed (100%) and Coite peel (98%) followed by Coite seed (96%) and Tommy peel powders (95%). The adsorption/reduction of Cr(VI) was complete (100%) by the mango seed, in comparison to the peel powders (97%) after 180 min. The data indicates that mango waste products, such as seed and peel powders, are both excellent candidates for the remediation of Cr(VI) from aqueous systems and due to the higher concentration of gallates and galloyl glucosides, the mango seed powders should be the powders of choice for future remediation projects.

  相似文献   

18.
Hexavalent chromium (Cr(VI)) was reduced to immobile and nontoxic Cr(III) by a dissimilatory metal reducing bacteria, Shewanella alga Simidu (BrY-MT) ATCC 55627. A series of kinetic batch and dynamic column experiments were conducted to provide an understanding of Cr(VI) reduction by the facultative anaerobe BrY-MT. Reduction of Cr(VI) was rapid (within 1 h) in columns packed with quartz sand and bacteria, whereas Cr(VI) reduction by BrY-MT was delayed (57 h) in the presence of beta-MnO2-coated sand. A mathematical model was developed and evaluated against data obtained from column experiments. The model takes into account (1) advective-dispersive transport of Cr(III), Cr(VI), lactate, and protein (mobile and immobile bacteria); (2) first-order kinetic adsorption of Cr(III) and lactate; (3) conversion of solid phase beta-MnO2 to solid phase MnOOH due to oxidation of Cr(III); (4) dual-Monod kinetics, where Cr(VI) is the electron acceptor and lactate is the electron donor. The breakthrough data for Cr(III), Cr(VI), lactate, and protein (mobile and immobile bacteria) were fitted simultaneously. The breakthrough data are well described by the mathematical model that considers the above processes. This result demonstrates the ability of the coupled hydrobiogeochemical model to simulate chromium transport in complex reactive systems.  相似文献   

19.
By ion exchange undesirable ions are replaced by others which don't contribute to contamination of the environment. The method is technologically simple and enables efficient removal of even traces of impurities from solutions. Examples of selective removal of heavy metal ions by ion-exchange are presented. They include removal of Pb(II), Hg(II), Cd(II), Ni(II), V(IV,V), Cr(III,VI), Cu(II) and Zn(II) from water and industrial wastewaters by means various modern types of ion exchangers.  相似文献   

20.
To develop an efficient bio-immobilization approach for the remediation of heavy metal pollution in soil, a mutant species of Bacillus subtilis (B38) was obtained by ultraviolet irradiation and selection under high concentration of cadmium (Cd) in a previous study. In the present study, to check the applicability of this mutated species to the sorption and immobilization of other metals, the sorption of four heavy metals, Cd, chromium (Cr), mercury (Hg), and lead (Pb), on living and nonliving B38 in single- and multiple-component systems under different conditions was investigated using batch experiments. Rapid metal binding occurred on both living and nonliving B38 during the beginning of the biosorption. The sorption kinetics followed the exponential equation for living biomass and the pseudo-first-order Lagergren model for nonliving biomass, with r 2 values in the range of 0.9004-0.9933. The maximum adsorptive quantity of the heavy metals on B38 changed with the solution pH, temperature, biomass dose, and ionic strength. The nonliving biomass generally showed greater or similar adsorptive capacities as compared with the living biomass and was not likely to be affected by the solution parameters. The bacterium had a stronger affinity to the cationic heavy metals than to the anionic one, and the equilibrium sorption amounts were 210.6, 332.3, and 420.9 mg/g for Cd(II), Hg(II), and Pb(II), respectively. The results of binary and ternary sorption experiments indicated that the metals with the higher sorption capacity in the single-component systems showed greater inhibitory effects on the biosorption of other metal ions in the multiple-component systems, but the sorption sites of Hg and Cd or Pb are likely to be different. The results of this study illustrated that the mutant species is a promising biosorbent for the remediation of multiple heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号