首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

The Zha Long Wetland, the first water bird conservation area in China, lies on the northern bank of the Song Nen Plain with an area of 2,100 km2. In many areas of the Zha Long Wetland, water pollution has led to a decrease in the wetland??s ecological function, vegetation degradation, a decrease in the number of bird species, and the depletion of fish resources.

Materials and methods

The sediments used in this study were collected from the surface sediment of seven sites and from different depths in three types of marshes in the Zha Long Wetland in northeast China in late October 2006. The levels and distribution patterns of 17 organochlorine pesticides (OCPs; ??-HCH, ??-HCH, ??-HCH, ??-HCH, p,p??-DDE, p,p??-DDD, p,p??-DDT, endosulfan I, endosulfan II, endosulfan sulfate, heptachlor, heptachlor epoxide, aldrin, dieldrin, endrin, endrin aldehyde, and methoxychlor) in surface sediments as well as hexachlorocyclohexane (HCH) and 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) in vertical sediments were investigated.

Results and discussion

The concentrations of HCHs, DDTs, endosulfans, heptachlors, aldrin, and methoxychlor in surface sediments ranged from 10.44 to 41.97 ng/g, nd (undetectable levels) to 211.88 ng/g, nd to 69.89 ng/g, nd to 28.10 ng/g, 9.81 to 623.83 ng/g, and from nd to 3.99 ng/g, respectively. The highest levels of OCPs were detected in Tangtugangzi at a total concentration of 727.72 ng/g, where the dominant compound was endrin at a concentration of 483.04 ng/g. In the vertical sediments, the HCHs and DDTs were in the ranges of nd?C136.00 and nd?C214.06 ng/g, respectively.

Conclusions

Different distributions of HCHs, DDTs, and other OCPs indicated that they originated from different contamination sources. Composition analyses in surface sediments indicated recent OCP usage or discharge at some sample sites in the Zha Long Wetland.  相似文献   

2.
East Lake resides in the urban area of Wuhan City and is the largest urban lake in China. The concentrations of 16 organochlorine pesticides (OCPs) were analyzed in 108 surface water samples collected from the East Lake. The total concentrations of OCPs ranged from not detected to 120 ng L?1 with predominance of δ-HCH, heptachlor, and α-HCH. The mean values of HCHs and DDTs were 7.40 and 5.70 ng L?1, respectively, accounting for 40 and 31 % of the total OCPs. For the five lakelets in East Lake, Houhu Lake exhibited the highest concentrations of HCHs, DDTs, and total OCPs, which has been used actively for fisheries and surrounded by suburban rural areas and farmlands. Historical lindane or technical HCH input was probably the source of HCH, while technical DDTs might be the source of DDT in the East Lake. The ratio between heptachlor and its metabolic products indicated recent input of heptachlor. Although the combining ecological risks for all aquatic species in the East Lake calculated by species sensitivity distribution reached approximately 10?5, the OCPs in the East Lake had slight effects on aquatic organisms. The carcinogenic risks and non-carcinogenic hazard indices of DDTs and HCHs indicated that water in the East Lake was not suitable as water sources for human. However, the results indicated the water quality was safe for people to swim in the urban lake.  相似文献   

3.
Organochlorine pesticides (OCPs), a potential threat to ecosystems and human health, are still widely residual in the environment. The residual levels of OCPs in the water and gas phase were monitored in Lake Chaohu, a large Chinese lake, from March 2010 to February 2011. Nineteen types of OCPs were detected in the water with a total concentration of 7.27?±?3.32 ng/l. Aldrin, DDTs and HCHs were the major OCPs in the water, accounting for 38.3 %, 28.9 % and 23.6 % of the total, respectively. The highest mean concentration (12.32 ng/l) in the water was found in September, while the lowest (1.74 ng/l) was found in November. Twenty types of gaseous OCPs were detected in the atmosphere with a total concentration of 542.0?±?636.5 pg/m3. Endosulfan, DDTs and chlordane were the major gaseous OCPs in the atmosphere, accounting for 48.9 %, 22.5 % and 14.4 % of the total, respectively. The mean concentration of gaseous OCPs was significantly higher in summer than in winter. o,p′-DDE was the main metabolite of DDT in both the water and gas phase. Of the HCHs, 52.3 % existed as β-HCH in the water, while α-HCH (37.9 %) and γ-HCH (30.9 %) were dominant isomers in the gas phase. The average fluxes were ?21.11, ?3.30, ?152.41, ?35.50 and ?1314.15 ng/(m2?day) for α-HCH, γ-HCH, HCB, DDT and DDE, respectively. The water–gas exchanges of the five types of OCPs indicate that water was the main potential source of gaseous OCPs in the atmosphere. A sensitivity analysis indicated that the water-gas flux of α-HCH, γ-HCH and DDT is more vulnerable than that of HCB and DDE to the variation of the parameters. The possible source of the HCHs in the water was from the historical usage of lindane; however, that in the air was mainly from the recent usage of lindane. The technical DDT and dicofol might be the source of DDTs in the water and air.  相似文献   

4.
Seventeen organochlorine pesticides (OCPs) were investigated in the water and sediments from a waterbird-inhabited lake (Yangchaihu Lake) to evaluate their current pollution levels and potential risks. The concentrations of total OCPs in water and sediments were 10.12–59.75 ng/l and 4.25–27.35 ng/g dry weight, respectively. Hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) were the most abundant OCPs, while HCB and cyclodiene pesticides were detected with low levels. Levels of ∑OCPs (sum of 17 OCPs) at sites highly influenced by waterbirds were significantly higher than the sites with no significant waterbird populations (one-way ANOVA, P?相似文献   

5.
Organochlorine pesticides (OCPs) are ubiquitous pollutants, and their presence in urban lakes is a concern for human and ecological health. Surface sediments in the East Lake, China, were collected in winter 2012 and summer 2013 to investigate concentrations, distribution patterns, possible sources, and potential ecological risks of OCPs in this area. The total concentrations of 14 OCPs ranged from 6.3 to 400 ng g?1 dry weight (dw) with an average concentration of 79 ng g?1 dw. The mean values of hexachlorocyclohexanes (HCHs) (α-, β-, γ-, and δ-HCH) and dichlorodiphenyltrichloroethanes (DDTs) (p,p’-DDE, p,p’-DDD, and p,p’-DDT) were 36 and 7.6 ng g?1 dw, accounting for 45 and 10 % of the total OCPs, respectively. The concentrations of OCPs in sediment samples collected in winter were significantly higher than those in summer, especially the HCHs, of which in winter were two times greater than summer. Composition analyses indicated that DDTs and endosulfan were mainly from historical contribution. Historical use of technical HCH and new input of lindane were probably the source of HCHs in the East Lake. Most sampling sites of HCHs and DDTs were found to have the potential ecological risk based on levels specified in the sediment quality standards.  相似文献   

6.
The present study assesses the persistence and variation of organochlorine pesticides (OCPs) and their regulation by total organic carbon (TOC) and black carbon (BC) in freshwater sediment. Sediment samples from the Yamuna River, a major tributary of the Ganges (one of the most populated and intensively used rivers in Asia), had high levels of Σ20OCPs (21.41 to 139.95 ng g?1). β-Hexachlorocyclohexane (β-HCH) was the most predominant component. ΣHCH and Σdichloro-diphenyl-trichloroethane (DDT) constituted ~86 % of Σ20OCPs. Isomer ratios indicated fresh usage of lindane, DDT and technical-grade HCH. Toxicological comparison with freshwater sediment quality guidelines showed γ-HCH and DDT at high levels of concern. β-HCH, α-HCH, endrin, heptachlor epoxide, dichloro-diphenyl-dichloroethane (DDD), dichloro-diphenyl-dichloroethylene and chlordane were above some of the guideline levels. TOC and BC had mean concentrations of 1.37?±?0.51 % and 0.46?±?0.23 mg g?1, respectively. BC constituted 1.25 to 10.56 % of TOC. We observed low to moderate correlations of BC with isomers of HCH, p,p′-DDT and methoxychlor while of TOC with Σ20OCPs, γ-HCH, endosulfan sulfate and methoxychlor. Principal component analysis enabled correlating and clustering of various OCPs, BC and TOC. OCP distribution was related with pH, electrical conductivity, soil moisture and finer fractions of sediment. OCPs with similarity in properties that determine their interactions with carbonaceous components of sediment clustered together. A number of factors may, thus, be involved in the regulation of interactive forces between BC and OCPs. BC in this study may be more important than TOC in the retention of some OCPs into fluvial sediments, thereby reducing their bioavailability. The finding is probably the first of its kind to report and emphasises the role of BC in the persistence of OCPs in fluvial sediments.  相似文献   

7.
Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were determined in 18 surface sediment samples collected from Bizerte lagoon, Tunisia. The total concentrations of ten PCBs (∑PCBs) and of four OCPs (∑OCPs) in the sediments from this area ranged from 0.8 to 14.6 ng g?1 dw (average value, 3.9 ng g?1 dw) and from 1.1 to 14.0 ng g?1 dw (average value, 3.3 ng g?1 dw), respectively. Among the OCPs, the range of concentrations of dichlorodiphenyltrichloroethane and its metabolites (DDTs) and hexachlorobenzene (HCB) were 0.3–11.5 ng g?1 dw (1.9 ng g?1 dw) and 0.6–2.5 ng g?1 dw (1.4 ng g?1 dw), respectively. Compositional analyses of the POPs indicated that PCB 153, 138 and 180 were the predominant congeners accounting for 60 % of the total PCBs. In addition, p,p′-DDT was found to be the dominant DDTs, demonstrating recent inputs in the environment. Compared with some other regions of the world, the Bizerte lagoon exhibited low levels of PCBs and moderate levels of HCB and DDTs. The high ratios ΣPCBs/ΣDDTs indicated predominant industrial versus agricultural activities in this area. According to the established guidelines for sediment quality, the risk of adverse biological effects from such levels of OCPs and PCBs, as recorded at most of the study sites, was insignificant. However, the higher concentrations in stations S1 and S3 could cause biological damage.  相似文献   

8.
Organochlorine pesticides (OCPs) were analyzed in 26 surface sediment samples from the Liaohe River basin, and the distributions of and potential environmental risks posed by OCPs in the basin were evaluated. Eighteen OCPs listed in the Stockholm Convention were determined using isotope-dilution gas chromatography–high resolution mass spectrometry. This is the first study of hexachlorobenzene (HCB) in the Liaohe River basin sediments. The total OCP concentrations were 0.39–68.06 ng g?1 dry weight. The total α-, β-, γ-, and δ-hexachlorocyclohexane (HCH), the total dichlorodiphenyltrichloroethane (DDT – p,p′-dichlorodiphenyldichloroethane (DDD), p,p′-dichlorodiphenyldichloroethylene (DDE), o,p'-DDT, and p,p′-DDT), and the HCB concentrations in the sediment samples were 0.1–28.48 ng g?1 (mean 4.01 ng g?1), 0.08–6.52 ng g?1 (mean 3.07 ng g?1), and 0.18–24.8 ng g?1 (mean 4.38 ng g?1), respectively. The HCB concentrations were higher than the concentrations of the other OCPs, and the HCHs and HCB together were the dominant OCPs. β-HCH was the most abundant HCH isomer. The concentrations of DDTs and other OCPs were relatively low, and the (DDE+DDD)/DDT ratios (>0.5) and DDD/DDE ratios (<1) indicated that no recent DDT inputs had occurred in the Liaohe River system. The main sources of HCHs were probably the historical production and agricultural use of HCH in the study area. The DDT and HCH concentrations were generally below or similar to the concentrations that have been found in other parts of the world. An ecotoxicological evaluation indicated that HCHs in surface sediments pose slight risks to human and ecological health in the Liaohe River basin.  相似文献   

9.
Limited information on the levels, inventory and fate of Organochlorine pesticides (OCPs) and Polybrominated diphenyl ethers (PBDEs) in the soils irrigated by sewage or wastewater is available. In this study, variation in concentrations, profiles and fate of OCPs and PBDEs were investigated using soil samples collected from a region irrigated by sewage, mixed water and clean water in the east of Beijing, China. No significant variation was observed among groups, except for penta-BDEs. The measured ΣOCPs and ΣPBDEs residues ranged from 6.4 to 171.2 ng g−1 (dw) and 501.9 to 3310.7 pg g−1 (dw), respectively. ΣDDTs and BDE-209 were the most abundant congeners accounting for about 76% of ΣOCPs and 93% of ΣPBDEs. Concentrations of hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethane (DDTs) and its major degradation products, and hexachlorobenzene (HCB) ranged from 1.2 to 11.4 ng g−1 (dw), 4.0 to 155.6 ng g−1 (dw) and 0.3 to 3.4 ng g−1 (dw), respectively. The major DDT degradation products were p,p′-DDT and p,p′-DDE. The major hexachlorocyclohexane (HCH) isomer in irrigated soils is β-HCH, reflecting its higher affinity to solids and resistance to degradation than other isomers. Both α-HCH/β-HCH and p,p′-DDT/p,p′-DDE ratios were log-normally distributed and negatively correlated to log(ΣHCHs) and log(ΣDDTs), respectively, suggesting no significant recent application of OCPs. Individual BDE congeners, ΣPBDEs and ΣOCPs were significantly correlated with total organic carbon (TOC). Moreover, a good correlationship between ΣPBDEs and black carbon (BC) was obtained but not between ΣOCPs and BC. Sewage irrigation did not have obvious effect on their contaminant levels and inventory of OCPs and PBDEs.  相似文献   

10.
Octanol-air partition coefficients (KOA) and supercooled liquid vapor pressures (PL) of nine organochlorine pesticides (OCPs) including p,p′-DDE, p,p′-DDD, o,p′-DDT, o,p′-DDE, o,p′-DDD, α-HCH, β-HCH, γ-HCH, δ-HCH were determined as functions of temperature using a gas chromatographic retention time method. Among them, the KOA of o,p′-DDE and o,p′-DDD and the PL of o,p′-DDE, o,p′-DDD, β-HCH and δ-HCH were determined for the first time. The determined KOA and PL values of investigated compounds at 25°C ranged from 3.14 × 107 (α-HCH) to 3.76×109 (p,p′-DDD), and 8.95×10? 4 Pa (p,p′-DDD) to 1.08×10? 1 Pa (α-HCH), respectively. The KOA and PL data were compared with published data. The KOA values of o,p′-DDT at 25°C were 3.23×109, higher than o,p′-DDE (1.02×109) and o,p′-DDD (2.01×109), indicating o,p′-DDT were more preferred to partition in soil compared with the metabolites. The KOA values were lower and PL values were higher for o,p′-DDE and o,p′-DDD, compared with their p,p′-isomeric counterparts, leading to a potential difference in behavior and fate of these isomers. The discrepancies among chemicals are obvious, which reflected in the increasing KOA and decreasing PL values in order of α-HCH, γ-HCH, β-HCH, δ-HCH, o,p′-DDE, p,p′-DDE, o,p′-DDD, o,p′-DDT, p,p′-DDD. For each compound, the LogKOA decreased linearly with reciprocal absolute temperature, while LogPL had a significant positive correlation with the inverse absolute temperature. The present study suggested that the method of gas chromatographic retention time was appropriate to measure the KOA and PL of a number of OCPs.  相似文献   

11.
Transport and fate of perfluoro- and polyfluoroalkyl substances (PFASs) in an urban water body that receives mainly urban runoff was investigated. Water, suspended solids, and sediment samples were collected during the monsoon (wet) and inter-monsoon (dry) season at different sites and depths. Samples were analyzed for C7 to C12 perfluoroalkyl carboxylate homologues (PFCAs) (PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA), perfluorohexane, perfluorooctane, and 6:2-fluorotelomer sulfonate (PFHxS, PFOS, and 6:2FtS, respectively), perfluorooctane sulfonamide (FOSA), N-ethyl FOSA (sulfluramid), N-ethyl sulfonamidoethanol (N-EtFOSE), and N-methyl and N-ethyl sulfonamidoacetic acid (N-EtFOSAA and N-MeFOSAA, respectively). Concentrations in wet samples were only slightly higher. The sum total PFAS (ΣPFAS) concentrations dissolved in the aqueous phase and sorbed to suspended solids (SS) ranged from 107 to 253 ng/L and 11 to 158 ng/L, respectively. PFOA, PFOS, PFNA, PFHxS, and PFDA contributed most (approximately 90 %) to the dissolved ΣPFASs. N-EtFOSA dominated the particulate PFAS burden in wet samples. K D values of PFOA and PFOS calculated from paired SS and water concentrations varied widely (1.4 to 13.7 and 1.9 to 98.9 for PFOA and PFOS, respectively). Field derived K D was significantly higher than laboratory K D suggesting hydrophobic PFASs sorbed to SS resist desorption. The ΣPFAS concentrations in the top sedimentary layer ranged from 8 to 42 μg/kg and indicated preferential accumulation of the strongly sorbing long-chain PFASs. The occurrence of the metabolites N-MeFOSAA, N-EtFOSAA and FOSA in the water column and sediments may have resulted from biological or photochemical transformations of perfluorooctane sulfonamide precursors while the absence of FOSA, N-EtFOSA and 6:2FtS in sediments was consistent with biotransformation.  相似文献   

12.
Octanol/water partition coefficients (Kow's) of organic solutes are estimated with reasonable accuracy (standard deviation ± 0.25 log Kow units) by elution from a C-18 column with 75:25 (v/v) MeOH-H2O, based on results with 37 test compounds. Changes in solute activity coefficients from water to 75% MeOH account for the slope of the log Kow-log k' plot, where k' is the HPLC capacity factor. The method is used to estimate Kow's for 25 additional organic compounds, and some disparities between the results and those calculated using group additivity-constitutive factors are noted.  相似文献   

13.
Tibetan Plateau is the world’s highest plateau, which provides a unique location for the investigation of global fractionation of organochlorine pesticides (OCPs). In this study, deposition and regional distribution of HCHs and p,p′-DDX in the western and southern Tibetan Plateau were investigated by the records from a sediment core of Lake Zige Tangco and 24 surface soils. Concentration of ΣHCHs in the surface soils of the western Tibetan Plateau was much higher than that of the southern part. Maximum fluxes of α-, β-, and δ-HCH in the sediment core were 9.0, 222, and 21 pg cm?2 year?1, respectively, which appeared in the mid-1960s. Significant correlations were observed between concentrations of α- and β-HCH in both the surface soils and the sediment core. Concentrations of both α- and β-HCH increased with the inverse of the average annual temperature of these sites. γ-HCH became the dominant isomer of HCHs after the late 1970s, and reached the maximum flux of 160 pg cm?2 year?1 in the early 1990s. There were no significant correlations between concentrations of γ-HCH and the other isomers in both the surface soils and the sediment core. The results suggested that there was input of Lindane at scattered sites in this area. In contrast to ΣHCHs, concentration of Σp,p′-DDX in the surface soils of the southern part was much higher than that of the western part. Maximum flux of Σp,p′-DDX was 44 pg cm?2 year?1, which appeared in the mid-1960s. Local emission of p,p′-DDT was found at scattered sites. This study provides novel data and knowledge for the OCPs in the western and southern Tibetan Plateau, which will help understand the global fractionation of OCPs in remote alpine regions.  相似文献   

14.
Degradation of three sulfonamides (SAs), namely sulfamethoxazole (SMX), sulfamethazine (SMZ), and sulfadimethoxine (SDM) in surface water and sediments collected from Taihu Lake and Dianchi Lake, China was investigated in this study. The surface water (5–10 cm) was collected from the east region of Taihu Lake, China. Two sets of degradation experiments were conducted in 3-L glass bottles containing 2 L of fresh lake water and 100 μg/L of individual SAs aerated by bubbling air at a rate of approximately 1.2 L/min, one of which was sterilized by the addition of NaN3 (0.1 %). Sediment samples were taken from Taihu Lake and Dianchi Lake, China. For the sediment experiment, 5 g of sediment were weighed into a 50-mL glass tube, with 10 mg/kg of individual SAs. Different experimental conditions including the sediment types, sterilization, light exposure, and redox condition were also considered in the experiments. The three SAs degraded in lake water with half-lives (t 1/2) of 10.5–12.9 days, and the half-lives increased significantly to 31.9–49.8 days in the sterilized water. SMZ and SDM were degraded by abiotic processes in Taihu and Dianchi sediments, and the different experimental conditions and sediments characteristics had no significant effect on their declines. SMX, however, was mainly transformed by facultative anaerobes in Taihu and Dianchi sediments under anaerobic conditions, and the degradation rate of SMX in non-sterile sediment (t 1/2 of 9.6–16.7 days) were higher than in sterilized sediment (t 1/2 of 18.7–135.9 days). Under abiotic conditions, degradation of SMX in Dianchi sediment was faster than in Taihu sediment, probably due to the higher organic matter content and inorganic photosensitizers concentrations in Dianchi sediment. High initial SAs concentration inhibited the SAs degradation, which was likely related to the inhibition of microorganism activities by high SAs levels in sediments. Results from this study could provide information on the persistence of commonly used sulfanomides antibiotics in lake environment.  相似文献   

15.
In September 2009, we investigated the residues, enantiomer fractions (EFs) and biological risks of organochlorine pesticides (OCPs), including dichlorodiphenyltrichloroethanes (DDTs) and hexachlorocyclohexanes (HCHs), in three different depth ranges (0–5 cm, 5–10 cm and 10–15 cm) of sediments from 15 sites in Hangzhou, China. The concentration (ng g?1 dry weight) ranges of HCHs and DDTs in surface sediments were 0.74–5.8 and 0.76–17, respectively. The vertical distribution of mean OCP concentrations was in the order of 10–15 cm > 5–10 cm > 0–5 cm and implied that the residues of HCHs and DDTs gradually decreased after they were banned. The residues of OCPs in the study area mainly originated from the historical OCP use. The isomer ratios of <alpha>-HCH (α-HCH)/<gamma>-HCH (γ-HCH) (0.10–7.6) implied that HCH residues were derived not only from historical technical HCH use but also from additional use of lindane in this area. The isomer ratios of o,p′-DDT/p,p′-DDT (51% of samples were in the range of 0.3–1.3) suggested that both dicofol-type DDT and technical DDT applications may be present in most study areas. The (+)-enantiomers of α-HCH and o,p′-DDT were more prevalent than (?)-enantiomer in most samples with the fractions contain different enantiomers greater than 0.5. DDTs, especially p,p′-DDE, are the main OCP species of more ecotoxicological concern in Hangzhou.  相似文献   

16.
The presence of residual organochlorine and organophosphorus pesticides was evaluated at different periods of sugarcane cultivation in agricultural soil and water samples from the town of Tlaltizapan, which is located in the state of Morelos in Mexico, to determine the presence and persistence of these compounds and their possible effects on the region. The compounds p,p′-DDE, p,p′-DDD (metabolites of p,p′-DDT), γ-HCH and heptachlor were found in more of 95% of the sampling zones in the three monitoring periods performed along 2 years. The highest concentration detected (129.6 μg/kg dry soil) was for α-HCH, but its frequency of detection was ~5%. The low detection frequency of α-HCH and the high concentration values of γ-HCH indicate the repeated use of technical-grade HCH and Lindane (γ-HCH) in the region. Among the organophosphorus pesticides, ethyl parathion was the compound with the highest soil concentration, at ~2000 μg/kgdry soil, during the initial monitoring. However, this compound was detected in the second monitoring with a concentration of ~4 μg/kgdry soil, but it was not detected in the third, indicating that is was not accumulated in the environment. The heptachlor was the compound most commonly found in all water samples, within a range of 0.45–1.25 ng/L. The presence of this organochlorine compound in the water samples indicated a possible migration from the soil to water bodies due to soil erosion. The presence of organophosphorus compounds was not detected in the water samples, which could be attributed to the moderate persistence of these compounds and their consequent degradation before arriving at the water bodies.  相似文献   

17.
The Sarno River is nicknamed “the most polluted river in Europe”. The main goal of this study is to enhance our knowledge on the Sarno River water and sediment quality and on its environmental impact on the gulf of Naples (Tyrrhenian Sea, Central Mediterranean Sea) in order to become a useful assessment tool for the regional administrations. For these reasons, 32 selected polychlorinated biphenyls (PCBs) and aldrin, α-BHC, β-BHC, δ-BHC, γ-BHC (lindane), 4,4′-DDD, 4,4′-DDE, 4,4′-DDT, dieldrin, endosulfan I, endosulfan II, endosulfan sulphate, endrin, endrin aldehyde, heptachlor, heptachlor epoxide (isomer B) and methoxychlor were determined in the water dissolved phase (DP), suspended particulate matter (SPM) and sediments. Total concentrations of PCBs ranged from 1.4 to 24.9 ng L?1 in water (sum of DP and SPM) and from 1.01 to 42.54 ng g?1 in sediment samples. The concentrations of total organochlorine pesticides (OCPs) obtained in water (sum of DP and SPM) ranged from 0.54 to 7.32 ng L?1 and from 0.08 to 5.99 ng g?1 in sediment samples. Contaminant discharges of PCBs and OCPs into the sea were calculated in about 1,247 g day?1 (948 g day?1 of PCBs and 326 g day?1 of OCPs), showing that this river should account as one of the main contribution sources of PCBs and OCPs to the Tyrrhenian Sea.  相似文献   

18.
Organochlorine pesticides were determined in water and sediment samples collected from the littoral zone of Lake Prespa, as well as from its three main tributaries (the rivers Golema, Brajcinska and Kranska), during the period 2004 to 2006. In addition, muscle tissue samples of barbus fish (Barbus prespensis Karaman, 1928) collected from the littoral zone of Lake Prespa were also analysed. The obtained results give an overview of the contamination levels of these problematic compounds at their potential sources in the river mouths, in the potentially affected, species-rich littoral section of the lake and in the muscle tissue of one selected fish species, collected near the rivers’ deltas. Special attention was paid to the presence of some DDT metabolites (1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p′–DDE); (1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (p,p′–DDD) and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (p,p′–DDT). The extraction of pesticides from water samples was done by liquid-liquid partition in dichloromethane. For the sediment and fish tissue we used solid-liquid extraction. The extracted residues were analyzed on a gas chromatograph equipped with an electron capture detector (GC-ECD). The results of the respective studies indicated the presence of DDT metabolic forms in the samples of the three analysed matrixes. The highest levels of presence for these pollutants were found in the muscle tissue of the fish samples. The total DDTs content in the analysed muscle tissue samples range from 11.67 to 13.58 μg kg?1of fresh tissue. The average total DDTs content for the sediment samples were within the range of 2.32 to 4.17 μg kg?1 of dry sediment. Higher DDT metabolites content were found in the sediments collected from the rivers than in the samples from the littoral zone. The lowest average total concentrations of DDTs, on the other hand, were recorded in the water samples and ranged between 0.036 and 0.057 μg L?1. The obtained results indicated that the dominant metabolic form in the samples of the three investigated matrixes (water, sediment and fish tissue) from Lake Prespa was p,p′-DDE. There was a very good linear correlation in this study between the content of DDT's (total DDT metabolites) detected and the percentage of total organic material in the sediment. The detected concentrations are clearly below the toxicity thresholds; consequently, severe effects on the endemic species of Lake Prespa are not very likely.  相似文献   

19.
Polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF) were overall measured and compared in ambient air, water, soils, and sediments along the upper reaches of the Haihe River of North China, so as to evaluate their concentrations, profiles, and to understand the processes of gas–particle partitioning and air–water/soil exchange. The following results were obtained: (1) The average concentrations (toxic equivalents, TEQs) of 2,3,7,8-PCDD/PCDF in air, water, sediment, and soil samples were 4,855 fg/m3, 9.5 pg/L, 99.2 pg/g dry weight (dw), and 56.4 pg/g (203 fg TEQ/m3, 0.46 pg TEQ/L, 2.2 pg TEQ/g dw, and 1.3 pg TEQ/g, respectively), respectively. (2) Although OCDF, 1,2,3,4,6,7,8-HpCDF, OCDD, and 1,2,3,4,6,7,8-HpCDD were the dominant congeners among four environmental sinks, obvious discrepancies of these congener and homologue patterns of PCDD/PCDF were observed still. (3) Significant linear correlations for PCDD/PCDF were observed between the gas–particle partition coefficient (K p) and the subcooled liquid vapor pressure (P L 0) and octanol–air partition coefficient (K oa). (4) Fugacity fraction values of air–water exchange indicated that most of PCDD/PCDF homologues were dominated by net volatilization from water into air. The low-chlorinated PCDD/PCDF (tetra- to hexa-) presented a strong net volatilization from the soil into air, while high-chlorinated PCDD/PCDF (hepta- to octa-) were mainly close to equilibrium for air–soil exchange.  相似文献   

20.
Barry G. Oliver 《Chemosphere》1985,14(8):1087-1106
The desorption of 20 chlorinated organics from sediments has been studied using a nitrogen purge/Tenax trap system for separating the “dissolved” and “sorbed” fractions in sediment/water slurries. The desorption partition coefficient, KD, was found to decrease with increasing temperature and suspended sediment concentration. While some differences in KD and desorption rates were observed for the study chemicals, considering their wide range of physical/chemical properties such as KOW, these changes were small. Desorption half-lives averaged about 60d at 4°C, 40d at 20°C and 10d at 40°C under continuous gaseous purging. Estimates of the loadings of chemicals via desorption from bottom sediments in Lake Ontario are compared to loadings of these chemicals to the lake from the Niagara River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号