首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study addresses a question about the nest-site selection process of honeybee swarms: how do the scout bees know when to initiate the preparation for their swarm’s move to their new home? We tested the quorum-sensing hypothesis: that the scouts do this by noting when one of the potential nest sites under consideration is being visited by a sufficiently large number of scouts. A falsifiable prediction of this hypothesis is that delaying the formation of a quorum of scout bees at a swarm’s chosen nest cavity, while leaving the rest of the decision-making process undisturbed, should delay the start of worker piping (the prepare-for-takeoff signal) and thus the takeoff of the swarm. In paired trials, we presented each of four swarms once with five nest boxes close to each other at a site and once with a single nest box. The multiple nest boxes caused the scouts visiting the site to be dispersed among five identical nest cavities rather than concentrated at one. We observed long delays in the start of piping and the start of takeoff in the five-nest-box trials relative to the one-nest-box trials. These results provide strong support for the quorum-sensing hypothesis.  相似文献   

2.
Nest-site selection in honeybees is a process of social decision making in which the scout bees in a swarm locate several potential nest sites, evaluate them, and select the best one by means of competitive signaling. We develop a model of this process and validate that the model possesses the key features of the bees' decision-making process, as revealed by prior empirical studies. Next, we use the model to study the “design” of the nest-site selection process, with a focus on how certain behavioral parameters have been tuned by natural selection to achieve a balance between speed and accuracy. First, we study the effects of the quorum threshold and the dance decay rate. We show that evolution seems to have settled on values for these two parameters that seek a balance between speed and accuracy of decision making by minimizing the time needed to achieve a consensus and maximizing the probability that the best site is chosen. Second, we study the adaptive tuning of the tendency of bees to explore for vs be recruited to a site. We show that this tendency appears to be tuned to regulate the positive feedback process of recruitment to ensure both a reasonably rapid choice and a low probability of a poor choice. Finally we show that the probability of choosing the best site is proportional to its quality, but that this proportionality depends on its quality relative to other discovered sites.
Thomas D. SeeleyEmail:
  相似文献   

3.
A swarm of honeybees provides a striking example of an animal group performing a synchronized departure for a new location; in this case, thousands of bees taking off at once to fly to a new home. However, the means by which this is achieved remain unclear. Shortly before takeoff, one hears a crescendo of a high-pitched mechanical signal—worker piping—so we explored the role of this signal in coordinating a swarm’s mass takeoff. Specifically, we examined whether exclusively nest site scouts produce the worker piping signal or whether it is produced in a relay or chain reaction fashion. We found no evidence that bees other than the scouts that have visited the swarm’s chosen nest site produce piping signals. This absence of relay communication in piping suggests that it is a signal that only primes swarms for takeoff and that the release of takeoff is triggered by some other signal or cue; perhaps the takeoff of bees on the swarm periphery as they reach flight temperature in response to piping.  相似文献   

4.
The function of the vibration signal of the honey bee (Apis mellifera) during house hunting was investigated by removing vibrating bees from swarms and examining the effects on waggle dancing for nest sites, liftoff preparations and swarm movement. We compared house hunting among three swarm types: (1) test swarms (from which vibrating bees were removed), (2) manipulated control (MC) swarms (from which randomly selected workers and some waggle dancers were removed), and (3) unmanipulated control (UC) swarms (from which no bees were removed). The removal of vibrating bees had pronounced effects on liftoff preparations and swarm movement. Compared to the MC and UC swarms, the test swarms had significantly greater liftoff-preparation periods, were more likely to abort liftoff attempts, and in some cases were unable to move to the chosen site after the swarm became airborne. However, the three swarm types did not differ in overall levels of waggle dance activity, the time required to achieve consensus for a nest site, the rate at which new waggle dancers were recruited for the chosen site, or the ability to maintain levels of worker piping necessary to prepare for flight. The removal of vibrating bees may therefore have altered liftoff behavior because of a direct effect on vibration signal activity. A primary function of the signal during house hunting may be to generate a level of activity in workers that enhances and coordinates responses to other signals that stimulate departure and movement to a new location.Communicated by R. Page  相似文献   

5.
6.
Social insect colonies need to explore and exploit multiple food sources simultaneously and efficiently. At the individual level, this colony-level behaviour has been thought to be taken care of by two types of individual: scouts that independently search for food, and recruits that are directed by nest mates to a food source. However, recent analyses show that this strict division of labour between scouts and recruits is untenable. Therefore, a modified concept is presented here that comprises the possible behavioural states of an individual forager (novice forager, scout, recruit, employed forager, unemployed experienced forager, inspector and reactivated forager) and the transitions between them. The available empirical data are reviewed in the light of both the old and the new concept, and probabilities for the different transitions are derived for the case of the honey-bee. The modified concept distinguishes three types of foragers that may be involved in the exploration behaviour of the colony: novice bees that become scouts, unemployed experienced bees that scout, and lost recruits, i.e. bees that discover a food source other than the one to which they were directed to by their nest mates. An advantage of the modified concept is that it allows for a better comparison of studies investigating the different roles performed by social insect foragers during their individual foraging histories. Received: 29 December 1999 / Revised: 25 February 2000 / Accepted: 16 October 2000  相似文献   

7.
This study addresses a question that lies at the heart of understanding how the scouts in a honey bee swarm achieve unanimity in their dances, and so reach agreement in their choice of a future nest site: what causes the scouts that perform dances for the non-chosen sites to stop dancing for these sites? One possibility is that a scout stops dancing for a non-chosen site only after she follows a lively dance for another site, such as the site that is ultimately chosen. This hypothesis is contradicted by the finding that 23 out of 27 scouts (in 6 swarms) that danced initially for a non-chosen site stopped their dancing before they followed a dance for another site. Evidently, a scout that supports initially one of the non-chosen sites is likely to withdraw her support for this site even before she learns about another site. What causes her to do so? Close examination of the behavior of scouts revealed that they reduce the strength of their dancing (waggle runs/return to the swarm) for a given site over consecutive returns to the swarm. On average, the pattern of this reduction in dancing is strikingly linear, which suggests that it arises from an internal, neurophysiological process that automatically drives down a scout's motivation to dance for a site. Other results suggest that scouts from inferior sites start their dancing less strongly, and so cease their dancing more rapidly, than do scouts from superior sites. If so, then during the consensus-building process of the scouts, it is the support (the dancing) for inferior sites that is most likely to die out while it is the support for a superior site that is most likely to prevail.  相似文献   

8.
The Red Dwarf honeybee (Apis florea) is one of two basal species in the genus Apis. A. florea differs from the well-studied Western Hive bee (Apis mellifera) in that it nests in the open rather than in cavities. This fundamental difference in nesting biology is likely to have implications for nest-site selection, the process by which a reproductive swarm selects a new site to live in. In A. mellifera, workers show a series of characteristic behaviors that allow the swarm to select the best nest site possible. Here, we describe the behavior of individual A. florea workers during the process of nest-site selection and show that it differs from that seen in A. mellifera. We analyzed a total of 1,459 waggle dances performed by 197 scouts in five separate swarms. Our results suggest that two fundamental aspects of the behavior of A. mellifera scouts—the process of dance decay and the process of repeated nest site evaluation—do not occur in A. florea. We also found that the piping signal used by A. mellifera scouts to signal that a quorum has been reached at the chosen site, is performed by both dancing and non-dancing bees in A. florea. Thus, the piping signal appears to serve a different purpose in A. florea. Our results illustrate how differences in nesting biology affect the behavior of individual bees during the nest-site selection process.  相似文献   

9.
1.  Colonies of Pheidole dentata employ a complex strategy of colony defense against invading fire ants. Their responses can be conveniently divided into the following three phases: (1) at low stimulation, the minor workers recruit nestmates over considerable distances, after which the recruited major workers (soldiers) take over the main role of destroying the intruders; (2) when the fire ants invade in larger numbers, fewer trails are laid, and the Pheidole fight closer to the nest along a shorter perimeter; (3) when the invasion becomes still more intense, the Pheidole abscond with their brood and scatter outward in all directions (Figs. 1, 4).
2.  Recruitment is achieved by a trail pheromone emitted from the poison gland of the sting. Majors can distinguish trail-laying minors that have just contacted fire ants, apparently by transfer of the body odor, and they respond by following the trails with more looping, aggressive runs than is the case in recruitment to sugar water. Majors are superior in fighting to the minors and remain on the battleground longer.
3.  The first phase of defense, involving alarm-recruitment, is evoked most strongly by fire ants and other members of the genus Solenopsis; the presence of a single fire ant worker is often sufficient to produce a massive, prolonged response (Figs. 2, 5, 6). In tests with Solenopsis geminata, it was found that the Pheidole react both to the odor of the body surface and to the venom, provided either of these chemical cues are combined with movement. Fire ants, especially S. geminata, are among the major natural enemies of the Pheidole, and it is of advantage for the Pheidole colonies to strike hard and decisively when the first fire ant scouts are detected. Other ants of a wide array of species tested were mostly neutral or required a large number of workers to induce the response. The alarm-recruitment response is not used when foragers are disturbed by human hands or inanimate objects. When such intrusion results in a direct mechanical disturbance of the nest, simulating the attack of a vertebrate, both minor and major workers swarm out and attack without intervening recruitment.
  相似文献   

10.
A honeybee colony needs to divide its workforce so that each of the many tasks it performs has an appropriate number of workers assigned to it. This task allocation system needs to be flexible enough to allow the colony to quickly adapt to an ever-changing environment. In this study, we examined possible mechanisms by which a honeybee colony regulates the division of labor between scouts (foragers that search for new food sources without having been guided to them) and recruits (foragers that were guided via recruitment dances toward food sources). Specifically, we examined the roles that the availability of recruitment dances and worker genotype has in the colony-level regulation of the number of workers engaged in scouting. Our approach was threefold. We first developed a mathematical model to demonstrate that the decision to become a scout or a recruit could be regulated by whether a potential forager can find a recruitment dance within a certain time period. We then tested this model by investigating the effect of dance availability on the regulation of scouts in the field. Lastly, we investigated if the probability of being a scout has a genetic basis. Our field data supported the hypothesis that scouts are those foragers that have failed to locate a recruitment dance as predicted by our model, but we found no effect of genotype on the propensity of foragers to become scouts.  相似文献   

11.
We measured patterns of individual forager specialization and colony-wide rates of material input during periods of response to experimental nest damage and during control periods in three colonies of the tropical social wasp Polybia occidentalis.
(1)  Most foragers specialized on gathering a single material. While active, foragers rarely switched materials, and most switching that did occur was between functionally related materials — prey and nectar (food materials) or wood pulp and water (nest materials).
(2)  Individuals differed greatly in activity level, here expressed as rate of foraging. Workers that foraged at high rates specialized on a single material in almost all cases. Specialized, highly active foragers comprised a minority (about 33%) of the working foragers in each colony, yet provided most of the material input.
(3)  Individual wasps that responded to experimental nest damage by foraging for nest materials did not gather food on days preceding or following manipulation.
(4)  On the colony level, nectar and prey foraging rates were not affected by foraging effort allocated to nest repair within days, or when comparing control days with days when damage was imposed. The emergency foraging response to nest damage in P. occidentalis did not depend on effort recruited away from food foraging.
Offprint requests to: S. O'Donnell  相似文献   

12.
Recruitment helps insect societies by bringing individuals to places where work needs to be done, but it also imposes energetic and opportunity costs. The net effect depends both on recruitment efficiency and on the ease with which insects can find work sites on their own. This study examined both of these factors for colony emigration by the ant Temnothorax curvispinosus. Emigrations were organized by a corps of active ants who transported the rest of the colony. These active ants either found new sites independently or followed tandem runs led by successful scouts. Although most tandem runs broke apart before reaching their target, even lost followers found the new site faster than did unguided searchers. When the new site was near the old nest, tandem runs were rare and summoned only a small proportion of the transporter corps. When the new site was instead distant and inconspicuous, tandem runs were common and brought roughly one third of the transporters. This pattern likely results from the quorum rule used by individual scouts to decide when to switch from tandem runs to transports. By monitoring how many nestmates have already found the nest, the ants ensure that the costs of recruitment are born only when necessary.  相似文献   

13.
1.  The physical characteristics of the drumming signal produced by workers of carpenter ants (Camponotus herculeanus L.) inside their nests, constructed in trees, were investigated. Typical elements of the inner nest structure are lamellae of about 50–500 cm2 derived from gnawing out the soft spring wood. On the thinnest lamellae (about 1 mm thick) the highest acceleration amplitudes of the signal were measured (on average 375 cm/s2 from peak to peak). The largest part of the intensity spectrum is between 200 and 1,500 Hz. On thicker lamellae the acceleration amplitudes are lower (at 12 mm thickness they average 140 cm/s2), and the upper end of the frequency range of the intensity spectrum is increased. The attenuation during the transmission is least along the longitudinal axis of thin cantilever lamellae (0.4 dB/cm) without alterations of thickness or connections to other lamellae. On a typical structure of the inner nest the attenuation is 1.2 dB/cm in the longitudinal axis, 2.7 dB/cm in the tangential axis and 4.3 dB/cm in the radial axis.
2.  The frequency of behavioural reactions to some vibrational stimuli was investigated. In worker ants sine-wave pulses release a stop-reaction (total freezing) or several reactions combined with locomotion (run-reactions). At high intensities (500 cm/s2) and high frequencies (1,000 Hz) mostly run-reactions occur, whereas, at the lower ranges, the stop-reaction predominates. The stop-reaction is released more often if the rise-decay times of the sine-wave pulses are short. The lowest acceleration threshold of reactions is 5 cm/s2 at frequencies ranging between 250–750 Hz. Stimulation with shockpulses causes mostly the stop-reaction and only few run-reactions. The lowest threshold is 5 cm/s2. Thus the animals can perceive the drumming signal over an average distance, depending on the direction of transmission, of 10–30 cm, and over 90 cm at the maximum. Shockpulse series are a stronger stimulus than single pulses of the same acceleration amplitude. The most effective time interval of the shockpulses is about 50 ms, which is the most frequent time interval of the beats of the natural drumming. A simple model describes the increased effect of shockpulse series by an additive superposition of functions of residual effects following the single pulses.
3.  Collective behavioural reactions to imitated drumming signals were investigated. They depend on the situation of the perceiving animals. The locomotory activity, measured by the number of changes from one nest compartment to the next, is increased by the signal. The combination with a second stimulus (air-puffs) increases the locomotory activity even more, and at the intensities used, multiplies the effects of the different stimuli. No orientation of the reactions with respect to the vibration source was found. The drumming signal shortens the time which males, females or larvae need to depart or to be carried by worker ants from nest areas affected by light to darkened ones. If ants of other species intrude into a nest, they are attacked more often. The drumming signal is not involved in the coordination of the mating flight.
  相似文献   

14.
The influence of multiple anchored fish aggregating devices (FADs) on the spatial behavior of yellowfin (Thunnus albacares) and bigeye tuna (T. obesus) was investigated by equipping all thirteen FADs surrounding the island of Oahu (HI, USA) with automated sonic receivers (“listening stations”) and intra-peritoneally implanting individually coded acoustic transmitters in 45 yellowfin and 12 bigeye tuna. Thus, the FAD network became a multi-element passive observatory of the residence and movement characteristics of tuna within the array. Yellowfin tuna were detected within the FAD array for up to 150 days, while bigeye tuna were only observed up to a maximum of 10 days after tagging. Only eight yellowfin tuna (out of 45) and one bigeye tuna (out of 12) visited FADs other than their FAD of release. Those nine fish tended to visit nearest neighboring FADs and, in general, spent more time at their FAD of release than at the others. Fish visiting the same FAD several times or visiting other FADs tended to stay longer in the FAD network. A majority of tagged fish exhibited some synchronicity when departing the FADs but not all tagged fish departed a FAD at the same time: small groups of tagged fish left together while others remained. We hypothesize that tuna (at an individual or collective level) consider local conditions around any given FAD to be representative of the environment on a larger scale (e.g., the entire island) and when those conditions become unfavorable the tuna move to a completely different area. Thus, while the anchored FADs surrounding the island of Oahu might concentrate fish and make them more vulnerable to fishing, at a meso-scale they might not entrain fish longer than if there were no (or very few) FADs in the area. At the existing FAD density, the ‘island effect’ is more likely to be responsible for the general presence of fish around the island than the FADs. We recommend further investigation of this hypothesis.
Laurent Dagorn (Corresponding author)Email:
Kim N. HollandEmail:
David G. ItanoEmail:
  相似文献   

15.
We analyze and model the structure of spatio-temporal wildfire ignitions in the St. Johns River Water Management District in northeastern Florida. Previous studies, based on the K-function and an assumption of homogeneity, have shown that wildfire events occur in clusters. We revisit this analysis based on an inhomogeneous K-function and argue that clustering is less important than initially thought. We also use K-cross functions to study multitype point patterns, both under homogeneity and inhomogeneity assumptions, and reach similar conclusions as above regarding the amount of clustering. Of particular interest is our finding that prescribed burns seem not to reduce significantly the occurrence of wildfires in the current or subsequent year over this large geographical region. Finally, we describe various point pattern models for the location of wildfires and investigate their adequacy by means of recent residual diagnostics.
Marc G. Genton (Corresponding author)Email: Email:
  相似文献   

16.
In this paper I demonstrate some of the techniques for the analysis of spatial point patterns that have become available due to recent developments in point process modelling software. These developments permit convenient exploratory data analysis, model fitting, and model assessment. Efficient model fitting, in particular, makes possible the testing of statistical hypotheses of genuine interest, even when interaction between points is present, via Monte Carlo methods. The discussion of these techniques is conducted jointly with and in the context of some preliminary analyses of a collection of data sets which are of considerable interest in their own right. These data sets (which were kindly provided to me by the New Brunswick Department of Natural Resources) consist of the complete records of wildfires which occurred in New Brunswick during the years 1987 through 2003. In treating these data sets I deal with data-cleaning problems, methods of exploratory data analysis, means of detecting interaction, fitting of statistical models, and residual analysis and diagnostics. In addition to demonstrating modelling techniques, I include a discussion on the nature of statistical models for point patterns. This is given with a view to providing an understanding of why, in particular, the Strauss model fails as a model for interpoint attraction and how it has been modified to overcome this difficulty. All actual modelling of the New Brunswick fire data is done only with the intent of illustrating techniques. No substantive conclusions are or can be drawn at this stage. Realistic modelling of these data sets would require incorporation of covariate information which I do not so far have available.
Rolf TurnerEmail:
  相似文献   

17.
18.
Variability exists among worker honey bees for components of division of labor. These components are of two types, those that affect foraging behavior and those that affect life-history characteristics of workers. Variable foraging behavior components are: the probability that foraging workers collect (1) pollen only; (2) nectar only; and (3) pollen and nectar on the same trip. Life history components are: (1) the age the workers initiate foraging behavior; (2) the length of the foraging life of a worker; and (3) worker length of life. We show how these components may interact to change the social organization of honey bee colonies and the lifetime foraging productivity of individual workers. Selection acting on foraging behavior components may result in changes in the proportion of workers collecting pollen and nectar. Selection acting on life-history components may affect the size of the foraging population and the distribution of workers between within nest and foraging activities. We suggest that these components define possible sociogenic pathways through which colony-level natural selection can change social organization. These pathways may be analogous to developmental pathways in the morphogenesis of individual organisms because small changes in behavioral or life history components of individual workers may lead to major changes in the organizational structure of colonies. Correspondence to: R.E. Page, Jr.  相似文献   

19.
Every recruitment system in social insects requires some individuals that serve as scouts, foragers that search independently for food sources. It is not well understood which factors influence whether an individual becomes a scout or a recruit, nor how the division of labor between the two forager groups is regulated. It is shown here for honeybees (Apis mellifera), using two different molecular techniques, that there is a genetically based difference in the probability that individuals will scout independently for food. In contrast to earlier suggestions, experimental tests showed that the age of a bee does not seem to influence its probability of becoming a scout or a recruit. Furthermore, scout bees do not search opportunistically for either pollen or nectar but, rather, individuals have preferences that are genetically based. These findings are discussed in the framework of foraging regulation by specialization in honeybees and the adaptive significance of polyandry. Received: 23 October 1997 / Accepted after revision: 10 April 1998  相似文献   

20.
Summary The stingless bee Trigona (Tetragonisca) angustula has a sophisticated defense strategy against flying insect predators at the entrance of its nest. Groups of worker bees hover on both sides in front of the nest entrance tube, facing a flight corridor leading to the nest. Intruders which enter this corridor are attacked by these bees from the side and from behind and are forced to the ground by biting bees clinging to their wings. T. angustula is subject to predation by Lestrimelitta limao, a cleptobiotic stingless bee which performs organized raids on other nests to rob food supplies, larval provisions and nest constructing material. The presence of citral, released by L. limao during the raids, leads to a rapid increase in the number of hovering guard bees in front of T. angustula nests. This recruitment in response to citral suggests that the defense behavior in T. angustula has evolved under the pressure of L. limao raids and that citral functions in T. angustula as an alarm kairomone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号