首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 406 毫秒
1.
铁碳微电解法去除石油废水中化学需氧量试验研究   总被引:1,自引:0,他引:1  
用铁碳微电解法处理石油开采废水中化学需氧量,探讨和分析了pH值、Fe/C比、铁碳投加量和反应时间对微电解处理效果的影响,实验结果表明铁碳微电解试剂的最佳条件为:pH值为3;铁屑投加量为50 g/L,铁碳质量比为1∶1,微电解反应时间为120 min,化学需氧量去除率最高可达39%.本实验优化了铁碳微电解法对石油开采废水预处理的最佳工艺条件,大大降低了石油废水预处理的成本和负荷,为石油废水消减化学需氧量的初步处理提供了理论基础和技术保障.  相似文献   

2.
Fenton氧化/混凝协同处理焦化废水生物出水的研究   总被引:27,自引:5,他引:27  
左晨燕  何苗  张彭义  黄霞  赵文涛 《环境科学》2006,27(11):2201-2205
对Fenton氧化/混凝协同处理焦化废水生物出水的方法进行了研究,在综合考虑经济性和去除效果的前提下,提出了反应的最佳条件:H2O2投加量为220 mg/L,Fe2+投加量为180 mg/L,聚丙烯酰胺投加量为4.5 mg/L,反应时间为0.5h,pH=7.最终COD去除率可达44.5%,色度可以降为35倍,出水符合国家污水排放二级标准.同时,通过分析分子量分布和小分子有机物组成,揭示了Fenton氧化/混凝协同处理焦化废水生物出水的污染物变化规律.结果表明焦化废水经过Fenton氧化/混凝协同处理后,其出水可达到国家二级排放标准,并且处理成本相对较低,具有实际应用的前景.  相似文献   

3.
为了解决霜脲氰农药废水难以直接生化降解的难题,采用铁碳微电解法对霜脲氰农药废水进行预处理,实验结果表明,废水初始pH值、铁碳比、铁碳填料投加量和反应时间对实验结果均产生直接影响.霜脲氰废水的最佳处理条件为:pH值为2,铁碳比为3∶1,投加量为1L废水280 g,反应时间80 min.COD去除率为47.95%,CN-去除率为39.75%,ρ(B)/ρ(C)达到0.20 ~ 0.25间,大大提高了霜脲氰废水的可生化性,表明铁碳微电解法可作为霜脲氰废水的预处理方法,为霜脲氰废水的预处理工艺提供新思路.  相似文献   

4.
利用Fenton强化微电解工艺对炼化企业二级出水展开处理研究,以出水有机物(COD)为考察指标,通过单因素分析法研究确定了2种微电解-Fenton氧化组合工艺:微电解-Fenton联合工艺和微电解-Fenton耦合工艺的最佳工艺参数。实验结果表明,微电解-Fenton联合工艺的最佳工艺参数为:铁炭微电解单元进水p H=3,Fe/C=3/2,Fe投加量为150 g/L,反应时间为2.5 h,海绵铁粒径为2~3mm,曝气量为5 L/min,Fenton氧化单元H_2O_2投加量为0.4 m L/L,反应时间为60 min;微电解-Fenton耦合工艺的最佳工艺参数为:进水p H=3,Fe/C=3/2,Fe投加量为150 g/L,海绵铁粒径为2~3 mm,曝气量为5 L/min,H_2O_2投加量为0.3 m L/L,反应时间为90 min。对2个组合工艺进行对比分析,结果显示微电解-Fenton耦合工艺的处理效果较佳,对炼化企业二级出水有机物处理率达89.30%,可生化性可达到38.2%。  相似文献   

5.
蒋辉  范迪  王娟 《环境科学与管理》2010,35(4):85-89,110
研究采用NaClO产生的HClO代替Fenton试剂中的氧化剂H2O2,并与Fe^2+协同处理焦化厂二级生化出水。结果表明:NaClO投加量,溶液的初始pH值,Fe^2+投加量,反应温度和投加方式是影响Fe^2+/NaClO处理焦化废水效果的重要因素,而反应时间对处理效果的影响不大。在相同实验条件下,Fe^2+/NaClO协同处理焦化废水的效果优于Fenton试剂。NaClO投加量为2 mL/L,pH=3,Fe^2+投加量为40 mg/L,反应时间为10 min,反应温度为25℃~45℃的最佳实验条件下,Fe^2+/NaClO对CODcr的去除率和色度的去除率分别为62.2%和81.7%,剩余CODcr能降到136 mg/L,色度减小为64倍,达到了国家二级排放标准的要求。  相似文献   

6.
采用O3/H2O2法对某炼油厂石化废水进行预处理,通过正交实验考察了pH、反应时间、O3流量和H2O2投加量对废水COD去除率的影响。单因素优化实验结果表明:在pH值为10.00,反应时间为50min,O3流量为4 g/h,H2O2投加量为30 mmol/L的条件下,废水中COD、挥发酚和色度去除率分别达76.78%、96.79%和94.44%,B/C由原来的0.067提高到0.380,出水可进入后续生化阶段进一步处理。同时,该反应体系符合一级反应动力学方程。  相似文献   

7.
文章采用自主开发的原位生成型动态膜反应器对高磷赤铁矿选矿酸性废水处理进行了实验研究。实验研究结果表明:选矿酸性废水除磷效果与脱磷剂的投加量、速度梯度(G值)、反应时间及pH等因素有关。对于pH2.25~2.56、含磷50mg/L的模拟选矿废水,最佳反应时间1h,速度梯度(G值)63.6,脱磷剂最佳投加量为11.25g/L,废水脱磷率92.47%。选矿酸性废水处理后出水pH升高,不利于实现废酸全部回用。  相似文献   

8.
采用电Fenton法预处理染料废水,对影响COD及色度去除率的各种因素,包括内电解反应的初始pH值、铁的投加量、铁炭投加比,Fenton试剂氧化处理过程中初始pH值、H2O2的投加量及投加方式、反应时间等进行了研究。结果表明,内电解反应的最佳条件为:pH值为3.0,铁的投加量为25g/L,Fe/C为1:1.3;Fenton试剂氧化处理染料废水的最佳条件为:H2O2投加量为30mmol/L,pH值为内电解出水pH值(pH值为4.0左右),反应时间为50min。COD去除率可达58%,色度去除率可达95%以上。  相似文献   

9.
UV/H2O2法处理焦化废水的试验研究   总被引:2,自引:1,他引:1  
焦化废水是一种典型的成分复杂的难降解有机废水。实验利用UV/H2O2法对焦化废水的处理进行研究,探讨了不同反应时间、H2O2投加量、pH值等因素对COD去除率及色度降解效果的影响。结果表明.废水起始COD质量浓度为1334mg几时,H2O2投加浓度为45mmol/L,pH值=11,紫外灯照射60min,COD去除率可达70%以上;随着H2O2投加量的增加以及pH值的升高,污水的色度明显降低。  相似文献   

10.
铁炭微电解预处理聚酯树脂废水的试验研究   总被引:1,自引:0,他引:1  
采用铁炭微电解法预处理聚酯树脂废水研究,先进行正交试验,考察铁屑投加量、铁炭比和废水初始pH值对微电解效果的影响,接着在正交试验的基础上进行单因素试验,确定铁炭微电解法的最优工艺参数。试验结果表明:废水初始pH值对微电解处理聚酯树脂废水的影响最大,其次是铁屑投加量和铁炭比,最适工艺条件为:室温,废水初始pH值为2.0,铁屑投加量为100 g/L,铁炭质量比为1:1,曝气搅拌反应时间2.0 h。在此工艺条件下,BOD5/CODcr从0.17增加到0.33;此外,废水的CODcr去除率也可达到50.91%,这大大降低了后续生化处理的有机负荷。  相似文献   

11.
探讨了石灰石与石灰投加量配比与反应时间对处理高浓度磷废水效果的影响,并通过激光粒径分析等手段重点考察了出水沉降性能及其与传统石灰法的比较。结果表明:对进水pH为4.5的100 mg/L含磷废水,联合处理石灰石和石灰投加量分别为0.030 0 g和0.070 0 g,石灰石和石灰段反应时间均为10 min时,磷的去除率达99%以上且出水的10 min泥水沉降比比传统石灰法降低25%;除磷产物的体积平均粒径与中值粒径(13.58μm、7.71μm)也明显高于传统石灰法(5.73μm、4.81μm),沉降性能明显提高;联合处理减少了石灰的用量,一方面保证了药剂成本,另一方面降低了出水pH,减少了约25%的回调用酸。  相似文献   

12.
通过滤柱考察了进水pH变化对海绵铁预处理染色废水的影响。研究结果表明,在pH为6、7、8、10时,过滤周期内脱色率都高于94%,出水pH大于7。与pH=6、7、8对比可知,在pH=10时,水头损失小,周期产水量高,出水含铁量低。海绵铁过滤柱活化后脱色率、周期产水量与活化前基本相同,出水pH比活化前低,出水铁含量相对较高。同时,通过扫描电镜图发现过滤柱内海绵铁腐蚀程度从上至下逐渐变小。  相似文献   

13.
硅酸钙深度处理焦化废水中COD的试验研究   总被引:1,自引:0,他引:1  
以硅酸钙作为吸附材料,研究了废水pH值、投加量及振荡时间对硅酸钙吸附性能的影响,结果表明:pH值为4,投加量为3.15g/100 mL,振荡时间为45 min时吸附达到平衡,硅酸钙对焦化废水生化出水中COD的去除率为46.3%;吸附等温线拟合结果表明,该吸附过程较符合Freundlich吸附等温式.  相似文献   

14.
The denitrification for the coking wastewater was conducted by means of original battery principle with Fe-C micro-electrolysis. Fe-C serves as positive and negative electrodes, by which N02?-N and TN were reduced to nitrogen, and then the purpose of denitrifieation for coking wastewater was realized. The influences of pH value, carbon particle size, Fe/C ratio (mass ratio), reaction time and coagulation pH value on removal rate of N02?-N and TN were investigated. Coking wastewater originated from Jiamusi Coal Chemistry Engineering Company. The optimum conditions of treatment were as follows: the initial pH was 3.0, the dosage of Fe 73.5 g/L, reaction time 70 min, mass ratio of Fe/C ratio 1.0:1.3, coagulation pH 9.0 and sedimentation time 40 min. Under those conditions, nitrogen removal efficiencies of N02?-N and TN were beyond 50% and 45%, respectively.  相似文献   

15.
采用Fe2+激活过硫酸盐(PS)耦合活性炭处理焦化废水生化出水.在原水TOC为86.4mg/L,色度338倍的条件下,研究PS和Fe2+投加量,初始pH值等因素对处理效果的影响.结果表明:PS和Fe2+投加量分别为1.5和4mmol/L,不调节pH值(8.0),反应60min,色度和TOC去除率可达87.17%和68.16%.经Fe2+/PS体系处理的废水采用A,B两种活性炭进行吸附处理,结果表明:B炭的吸附效果较好,且可去除Fe2+/PS体系残留的PS.B炭15g/L,反应120min时,出水色度为14倍,TOC 11.86mg/L.Fe2+激活PS氧化法耦合活性炭吸附深度处理焦化废水时,总色度去除率95.86%,总TOC去除率86.27%.对生化出水,Fe2+/PS体系出水和活性炭吸附出水进行三维荧光光谱扫描分析,结果表明:Fe2+/PS体系能氧化分解废水中部分类腐植酸物质,而活性炭吸附则可进一步去除了废水中残留的类腐植酸物质.  相似文献   

16.
铁屑/焦炭/H2O2法预处理焦化废水的试验研究   总被引:3,自引:1,他引:2  
采用铁屑/焦炭/H2O2法对焦化废水进行处理,通过单因素试验法考察了铁炭比、铁炭用量、H2O2用量、废水pH以及反应时间对处理效果的影响,并确定了最适工艺条件。结果表明,铁屑/焦炭/H2O2法与常规的铁屑内电解法相比,可显著提高焦化废水的预处理效果,并缩短反应时间。铁屑/焦炭/H2O2法处理焦化废水的最适条件为:铁炭比为4,铁炭用量为300mg/L铁屑+75mg/L焦炭,H2O2用量为1000mg/L,pH为3,反应时间20min。在此条件下,COD、色度、NH3-N和CN-的去除效率分别可达61.2%、74.0%、56.2%和74.3%,B/C比由处理前的0.189提高到0.387,处理水可生化性良好。铁屑/焦炭/H2O2可作为焦化废水的一种有效的预处理方法。  相似文献   

17.
采用TiO2光催化氧化法对焦化废水外排水进行深度处理,考察反应时间,TiO2投加量及废水初始pH对TOC降解的影响,通过GC/MS技术对处理前后废水中的有机物组分进行定性分析,解析废水在TiO2光催化氧化过程中有机物的降解规律. 结果表明:在反应时间为3 h,TiO2投加量为4 g/L,以及不调节废水pH的条件下,焦化废水外排水经TiO2光催化氧化深度处理后TOC的去除率为53.40%,有机物种类由66种降为23种;TiO2光催化氧化法对除多环芳烃外的其他有机物均有较好的去除效果;不同种类有机物在TiO2光催化氧化过程中的降解速率为石油烃>醇、酸、醛等有机物>酚>苯系物>含氮杂环有机物>多环芳烃.   相似文献   

18.
郑莹  牟彪  王萍  王亚娥  李杰 《中国环境科学》2018,38(7):2535-2541
采用硝基苯(NB)模拟废水对生物海绵铁体系进行驯化,考察了NB初始浓度、海绵铁投加量、初始pH值、温度等因素对生物海绵铁体系降解NB的影响,初步探讨了生物海绵铁体系高效降解NB的机理.结果表明:生物海绵铁体系较普通活性污泥系统对NB适应性及氧化作用更强,驯化至第28d对300mg/L NB废水去除率稳定在98%以上,驯化周期比普通活性污泥体系缩短28d;海绵铁的加入大大促进了微生物对NB的降解,NB初始浓度及pH值对生物海绵铁体系降解速率影响较大,该体系适宜的温度范围较广,10~40℃均能高效降解NB,生物海绵铁体系对NB的降解符合零级反应动力学规律;生物海绵铁体系中活性氧化物(ROS)含量明显高于海绵铁体系及污泥体系,尤其是介入铁泥的生物海绵铁体系ROS含量更高,为体系发生较强类Fenton效应提供了条件.在实验确定的最佳工况下,经NB驯化的铁泥与海绵铁形成的生物海绵铁体系,NB降解速率为31.49min-1,6hNB降解率及TOC去除率分别高达92.0%和63.1%,较单独海绵铁体系与单独铁泥体系降解率的叠加值分别高出22.3%和11.4%.本研究为经济有效地处理NB废水提供了新思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号