首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gas mixtures of H2S and NH3 are the focus of this study of research concerning gases generated from animal husbandry and treatments of anaerobic wastewater lagoons. A heterotrophic microflora (a mixture of Pseudomonas putida for H2S and Arthrobacter oxydans for NH3) was immobilized with Ca-alginate and packed into a fluidized bed reactor to simultaneously decompose H2S and NH3. This bioreactor was continuously supplied with H2S and NH3 separately or together at various ratios. The removal efficiency, removal rate, and metabolic product of the bioreactor were studied. The results showed that the efficiency remained above 95% when the inlet H2S concentration was below 30 ppm at 36 L/hr. Furthermore, the apparent maximum removal and the apparent half-saturation constant were 7.0 x 10(-8) g-S/cell/day and 76.2 ppm, respectively, in this study. The element sulfur as a main product prevented acidification of the biofilter, which maintained the stability of the operation. As for NH3, the greater than 90% removal rate was achieved as long as the inlet concentration was controlled below 100 ppm at a flow rate of 27 L/hr. In the NH3 inlet, the apparent maximum removal and the apparent half-saturation constant were 1.88 x 10(-6) g-N/cell/day and 30.5 ppm, respectively. Kinetic analysis showed that 60 ppm of NH3 significantly suppressed the H2S removal by Pseudomonas putida, but H2S in the range of 5-60 ppm did not affect NH3 removal by Arthrobacter oxydans. Results from bioaerosol analysis in the bioreactor suggest that the co-immobilized cell technique applied for gas removal creates less environmental impact.  相似文献   

2.
A polysulfone microporous membrane module was investigated for control of 1-butanol-contaminated gas streams. A diurnal loading condition, using two different butanol concentrations, was used to simulate start-up and stop conditions associated with shift work. The membrane module was also used to remove 1-butanol from air under continuous loading conditions in a bioreactor. The reactors were seeded with a mixed bacterial consortium capable of butanol biodegradation. Biokinetic parameters for butanol utilization were determined for the culture to be a maximum specific utilization rate (k) equal to 4.3 d(-1) and a half saturation constant (Ks) equal to 8.9 mg L(-1). A biofilter running only with diurnal loading conditions giving a "40-hr work-week" had an average 1-butanol removal rate of 29% (111 ppm, 74 gm(-3) hr(-1)) from a 350-ppm influent at the end of an 8-hr operational day. End-of-day removal varied between 4 and 67% during the operational period. With continuous steady-state operation followed by placement on a diurnal loading schedule and influent butanol concentrations increased to 700 ppm, butanol removal averaged 38% (269 ppm, 145 gm-3 hr(-1)). Under continuous loading, steady-state conditions, 1-butanol removal from the airstream was greater than 99% (200 ppm, 73 gm-3 hr(-1)). These results suggest that the bioreactor can be operated on a diurnal schedule or 40-hr week operational schedule without any decline in performance.  相似文献   

3.
The purpose of this study was to investigate the nitrification and nitrogen removal from centrate produced in the dewatering process of anaerobically digested sludge, using a single-unit, single-zone submerged attached-growth bioreactor. The nitrogen loading varied from 0.54 to 1.51 kg-N/m3 x d. Stable ammonia oxidation (nitritification) to nitrite was demonstrated. A nitritification efficiency of 98% was achieved, while the denitrification efficiency varied from 84 to 99% (with methanol). The average total nitrogen removal was 85%. Inhibition of nitrite oxidation by a limited penetration of dissolved oxygen into the biofilm and free ammonia resulted in the accumulation of nitrite, while inhibition of ammonia oxidation by free nitrous acid did not occur. The quantity of biomass, in terms of volatile solids, ranged from 10123 to 16034 mg-VS/L of media.  相似文献   

4.
Abstract

A polysulfone microporous membrane module was investigated for control of 1-butanol-contaminated gas streams. A diurnal loading condition, using two different butanol concentrations, was used to simulate startup and stop conditions associated with shift work. The membrane module was also used to remove 1-butanol from air under continuous loading conditions in a bioreactor. The reactors were seeded with a mixed bacterial consortium capable of butanol biodegradation. Biokinetic parameters for butanol utilization were determined for the culture to be a maximum specific utilization rate (k) equal to 4.3 d?1 and a half saturation constant (Ks) equal to 8.9 mg L?1. A biofilter running only with diurnal loading conditions giving a “40-hr workweek” had an average 1-butanol removal rate of 29% (111 ppm, 74 gm?3 hr?1) from a 350-ppm influent at the end of an 8-hr operational day. End-of-day removal varied between 4 and 67% during the operational period. With continuous steady-state operation followed by placement on a diurnal loading schedule and influent butanol concentrations increased to 700 ppm, butanol removal averaged 38% (269 ppm, 145 gm?3 hr?1). Under continuous loading, steady-state conditions, 1-butanol removal from the airstream was greater than 99% (200 ppm, 73 gm?3 hr?1). These results suggest that the bioreactor can be operated on a diurnal schedule or 40-hr week operational schedule without any decline in performance.  相似文献   

5.
The final purpose of our series of studies is to establish a biological removal method of cyanobacteria and their toxic products using immobilized microorganisms that can lyse cyanobacteria and decompose microcystins. To establish the biological removal method in non-point areas and water purification plants, as the first step, we explored bacteria active against the cyanobacterial hepatotoxin microcystin in the present study. Eleven active bacteria were isolated from samples taken from Lakes Tsukui and Sagami, Japan. Among 3 strains (B-9 to B-11) with degradative activity, strain B-9 exhibited the strongest activity. The 16S rDNA sequence of the strain B-9 showed the highest similarity to that of Sphingomonas sp. Y2 (AB084247, 99% similarity). Microcystins-RR and -LR were completely degraded by strain B-9 (SC16) within 1d, which led to an immobilized microorganism with a polyester resin. The degradation of microcystin-RR in a bioreactor using the immobilized strain B-9 was observed and microcystin-RR (> 90%) was completely degraded after 24 h. Microcystin-RR was added to the lake water at regular intervals and the degradation after 24 h was observed in the bioreactor over a 72-d period. An over 80% removal efficiency continued for 2 months, showing that the life of the immobilized B-9 in terms of activity was at least 2 months under the optimized conditions. From these results, this immobilized B-9 is feasible for the practical treatment of microcystins in non-point areas and water purification plants.  相似文献   

6.
Simultaneous removal of H2S and CS2 was studied with a peat biofilter inoculated with a Thiobacillus strain that oxidizes both compounds in an acidic environment. Both sulfurous gases at concentrations below 600 mg S/m3 were efficiently removed, and the removal efficiencies were similar, 99%, with an empty bed retention time (EBRT) of more than 60 sec. Concentrations greater than 1300-5000 mg S/m3 caused overloading of the filter material, resulting in high H2SO4 production, accumulation of elemental sulfur, and reduced removal efficiency. The highest sulfur removal rate achieved was 4500 g-S/day/m3 filter material. These results indicate that peat is suitable as a biofilter material for the removal of a mixture of H2S and CS2 when concentrations of gases to be purified are low (less than 600 mg/m3), but it is still odorous and toxic to the environment and humans.  相似文献   

7.
Simultaneous removal of hydrogen sulfide (H2S) and ammonia (NH3) gases from gaseous streams was studied in a biofilter packed with granule activated carbon. Extensive studies, including the effects of carbon (C) source on the growth of inoculated microorganisms and gas removal efficiency, product analysis, bioaerosol emission, pressure drop, and cost evaluation, were conducted. The results indicated that molasses was a potential C source for inoculated cell growth that resulted in removal efficiencies of 99.5% for H2S and 99.2% for NH3. Microbial community observation by scanning electron microscopy indicated that granule activated carbon was an excellent support for microorganism attachment for long-term waste gas treatment. No disintegration or breakdown of biofilm was found when the system was operated for 140 days. The low bioaerosol concentration emitted from the biofilter showed that the system effectively avoided the environmental risk of bioaerosol emission. Also, the system is suitable to apply in the field because of its low pressure drop and treatment cost. Because NH3 gas was mainly converted to organic nitrogen, and H2S gas was converted to elemental sulfur, no acidification or alkalinity phenomena were found because of the metabolite products. Thus, the results of this study demonstrate that the biofilter is a feasible bioreactor in the removal of waste gases.  相似文献   

8.
Chung YC  Huang C  Tseng CP  Pan JR 《Chemosphere》2000,41(3):329-336
Gas mixture of H2S and NH3 in this study has been the focus in the research area concerning gases generated from the animal husbandry and the anaerobic wastewater lagoons used for their treatment. A specific microflora (mixture of Thiobacillus thioparus CH11 for H2S and Nitrosomonas europaea for NH3) was immobilized with Ca-alginate and packed inside a glass column to decompose H2S and NH3. The biofilter packed with co-immobilized cells was continuously supplied with H2S and NH3 gas mixtures of various ratios, and the removal efficiency, removal kinetics, and pressure drop in the biofilter was monitored. The results showed that the efficiency remained above 95% regardless of the ratios of H2S and NH3 used. The NH3 concentration has little effect on H2S removal efficiency, however, both high NH3 and H2S concentrations significantly suppress the NH3 removal. Through product analysis, we found that controlling the inlet ratio of the H2S/NH3 could prevent the biofilter from acidification, and, therefore, enhance the operational stability. Conclusions from bioaerosol analysis and pressure drop in the biofilter suggest that the immobilized cell technique creates less environmental impact and improves pure culture operational stability. The criteria for the biofilter operation to meet the current H2S and NH3 emission standards were also established. To reach Taiwan's current ambient air standards of H2S and NH3 (0.1 and 1 ppm, respectively), the maximum inlet concentrations should not exceed 58 ppm for H2S and 164 ppm for NH3, and the residence time be kept at 72 s.  相似文献   

9.
Two types of media, a natural medium (wood chips) and a commercially engineered medium, were evaluated for sulfur inhibition and capacity for removal of hydrogen sulfide (H2S). Sulfate was added artificially (40, 65, and 100 mg of S/g of medium) to test its effect on removal efficiency and the media. A humidified gas stream of 50 ppm by volume H2S was passed through the media-packed columns, and effluent readings for H2S at the outlet were measured continuously. The overall H2S baseline removal efficiencies of the column packed with natural medium remained >95% over a 2-day period even with the accumulated sulfur species. Added sulfate at a concentration high enough to saturate the biofilter moisture phase did not appear to affect the H2S removal process efficiency. The results of additional experiments with a commercial granular medium also demonstrated that the accumulation of amounts of sulfate sufficient enough to saturate the moisture phase of the medium did not have a significant effect on H2S removal. When the pH of the biofilter medium was lowered to 4, H2S removal efficiency did drop to 36%. This work suggests that sulfate mass transfer through the moisture phase to the biofilm phase does not appear to inhibit H2S removal rates in biofilters. Thus, performance degradation for odor-removing biofilters or H2S breakthrough in field applications is probably caused by other consequences of high H2S loading, such as sulfur precipitation.  相似文献   

10.
BACKGROUND, AIM, AND SCOPE: Chromium(VI) resistance and its association with extracellular polymeric substance (EPS) concentration in cyanobacteria was investigated. Increased EPS concentration was associated with Cr(VI) resistance. The most resistant isolate, Chroococcus sp. H(4), secreted the most EPS (427 mg/L). MATERIALS AND METHODS: EPS concentration of the two most resistant isolates (Chroococcus sp. H(4) and Synechocystis sp. S(63)) was investigated following exposure to 15 and 35 ppm Cr(VI). The composition of EPS produced by Chroococcus sp. H(4) following exposure to 10 ppm Cr(VI) was analyzed using high-performance liquid chromatography. Control EPS was composed of glucose (99%) and galactronic acid (1%); in the presence of 10 ppm Cr(VI), EPS composition changed to glucose (9%), xylose (75%), rhamnose (14%), and galacturonic acid (2%). RESULTS AND DISCUSSION: Results indicated that (1) exposure to elevated concentrations of Cr(VI) affected the composition of EPS produced by Chroococcus sp. H(4), and (2) there was a correlation between Cr(VI) resistance and EPS concentration in some cyanobacteria.  相似文献   

11.
ABSTRACT

A biotrickling filter with blast-furnace slag packings (sizes = 20-40 mm and specific surface area = 120 m2/m3) was utilized to treat NO in an air stream. The operational stability, as well as the effects of gas empty-bed retention time (EBRT) and nutrient addition on the removal ability of NO, were tested. Approximately six weeks were required for the development of a biofilm for NO degradation, and a two-week organic carbon deficiency resulted in the detachment of biofilms from the packing surfaces. A steady removal rate of 80% was attained at specified influent NO concentrations of 892 to 1237 ppm and an EBRT of 118 sec. The effluent NO concentration diminished exponentially with enlarging EBRT, with influent NO concentrations of 203-898 ppm, and EBRTs of 25 to 118 sec. Nutrient addition is essential for efficient removal of the influent NO. Mass ratios of C: P: N = 7: 1: 30 and NaHCO3: NO-N = 6.3 could be used for practical applications.  相似文献   

12.

Introduction

Wastewater derived from leather production may contain phenols, which are highly toxic, and their degradation could be possible through bioremediation technologies.

Materials, methods and results

In the present work, microbial degradation of phenol was studied using a tolerant bacterial strain, named CS1, isolated from tannery sediments. This strain was able to survive in the presence of phenol at concentrations of up to 1,000?mg/L. On the basis of morphological and biochemical properties, 16S rRNA gene sequencing, and phylogenetic analysis, the isolated strain was identified as Rhodococcus sp. Phenol removal was evaluated at a lab-scale in Erlenmeyer flasks and at a bioreactor scale in a stirred tank reactor. Rhodococcus sp. CS1 was able to completely remove phenol in a range of 200 to 1,000?mg/L in mineral medium at 30 ± 2?°C and pH 7 as optimal conditions. In the stirred tank bioreactor, we studied the effect of some parameters, such as agitation (200?C600 rpm) and aeration (1?C3?vvm), on growth and phenol removal efficiency. Faster phenol biodegradation was obtained in the bioreactor than in Erlenmeyer flasks, and maximum phenol removal was achieved at 400?rpm and 1 vvm in only 12?h. Furthermore, Rhodococcus sp. CS1 strain was able to grow and completely degrade phenols from tannery effluents after 9?h of incubation.

Conclusion

Based on these results, Rhodococcus sp. CS1 could be an appropriate microorganism for bioremediation of tannery effluents or other phenol-containing wastewaters.  相似文献   

13.
The fate of seven sex hormones (estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), testosterone, androstenedione, and progesterone) was determined in two pilot-scale wastewater treatment plants operated under conventional loading conditions. The levels of hormones in both the liquid and the solid matrixes of the plants were determined. Each of the two 20-l/h pilot-scale plants consisted of a primary clarifier followed by a three-stage aeration tank and a final clarifier. The primary sludge and the waste activated sludge (WAS) were digested anaerobically in one pilot plant and aerobically in the other. The pilot plants were fed a complex synthetic wastewater spiked with the hormones. Levels of testosterone, androstenedione and progesterone were close to method detection limit (MDL) concentrations in the final and digester effluents (both liquid and solid phases) and were considered as completely removed. Average mass flux removals from the liquid streams (plant influent minus secondary clarifier effluent) for the natural estrogens were 82% for E1, 99% for E2, and 89% for (E1+E2). An average overall removal of only 42% was achieved for EE2. These values reflect removals averaged for the two pilot plants.  相似文献   

14.
Removal of DEHP in composting and aeration of sewage sludge   总被引:4,自引:0,他引:4  
The potential of composting and aeration to remove bis(2-ethylhexyl) phthalate (DEHP) from municipal sewage sludge was studied with two dewatered sludges: raw sludge and anaerobically digested sludge. Composting removed 58% of the DEHP content of the raw sludge and 34% of that of the anaerobically digested sludge during 85 days stabilisation in compost bins. A similar removal for the anaerobically digested sludge was achieved in a rotary drum in 28 days. Less than 1% of DEHP was removed with the compost leachate. Although DEHP removal was greater from raw sludge compost than anaerobically digested sludge compost, the total and volatile solids removals were on the same level in the two composts. In the aeration of raw sludge at 20 degrees C the DEHP removals were 33-41% and 50-62% in 7 and 28 days, respectively. Both composting and aeration are concluded to have the potential to reduce the DEHP contents typically found in sewage sludges to levels acceptable for agricultural use.  相似文献   

15.
Zhao Y  Ren N  Wang A 《Chemosphere》2008,72(2):233-242
The roles of fermentative acidogenic bacteria and sulfate-reducing bacteria (SRB) in lactate degradation and sulfate reduction in a sulfidogenic bioreactor were investigated by traditional chemical monitoring and culture-independent methods. A continuously stirred tank reactor fed with synthetic wastewater containing lactate and SO(2-)(4) at 35 degrees C, 10h of hydraulic retention time was used. The results showed that sulfate removal efficiency reached 99%, and sulfide and acetate were the main end products after 20 d of operation. 16S rRNA gene based clone libraries and single-strand conformation polymorphism profiles demonstrated that the proportion of SRB increased from 16% to 95%, and that Desulfobulbus spp., Desulfovibrio spp., Pseudomonas spp. and Clostridium spp. formed a stable, dominant community structure. The decreasing COD/SO(2-)(4) ratio had little effect on the community pattern except that Pseudomonas spp. and Desulfobulbus spp. increased slightly. The addition of molybdate to the influent significantly changed the microbial community, sulfate removal efficiency and the pattern of end products. Clostridium spp., Bacteroides spp. and Ruminococcus spp. became the dominant community members. The main end products switched from acetate to ethanol and then to propionate with the oxidation-reduction potentials increasing from -420 to -290 mV. A lactate degradation pathway was deduced: lactate served as the electronic donor for Desulfovibrio spp., or was fermented by Clostridium spp. and Bacteroides spp. to produce propionate or ethanol, which were subsequently utilized by Desulfobulbus spp. and Desulfovibrio spp. The acidotrophic SRB oxidized part of the acetate finally.  相似文献   

16.
In order to remove high concentrations of hydrogen sulfide (H2S) gas from anaerobic wastewater treatments in livestock farming, a novel process was evaluated for H2S gas abatement involving the combination of chemical absorption and biological oxidation processes. In this study, the extensive experiments evaluating the removal efficiency, capacity, and removal characteristics of H2S gas by the chemical absorption reactor were conducted in a continuous operation. In addition, the effects of initial Fe2+ concentrations, pH, and glucose concentrations on Fe2+ oxidation by Thiobacillus ferrooxidans CP9 were also examined. The results showed that the chemical process exhibited high removal efficiencies with H2S concentrations up to 300 ppm, and nearly no acclimation time was required. The limitation of mass-transfer was verified as the rate-determining step in the chemical reaction through model validation. The Fe2+ production rate was clearly affected by the inlet gas concentration as well as flow rate and a prediction equation of ferrous production was established. The optimal operating conditions for the biological oxidation process were below pH 2.3 and 35 degrees C in which more than 90% Fe3+ formation ratio was achieved. Interestingly, the optimal glucose concentration in the medium was 0.1%, which favored Fe2+ oxidation and the growth of T. ferrooxidans CP9.  相似文献   

17.
C Lu  M R Lin  J Lin 《Chemosphere》2001,44(2):173-180
The system performance of a trickle-bed air biofilter (TBAB) for treating N,N-dimethylacetamide (DMAC) waste gas was investigated under different gas flow rates and influent concentrations. In the pseudo-steady-state conditions, the DMAC elimination capacity increased but the removal efficiency decreased as the influent loading increased. More than 90% and 80% DMAC removal efficiencies are achieved for influent loadings below 20.2 and 34.5 g DMAC/m3/h, respectively. The TBAB appears to be an effective treatment process for controlling DMAC emission with low-to-medium loadings and the effectiveness could be maintained over a long-period operation.  相似文献   

18.
Jin Y  Veiga MC  Kennes C 《Chemosphere》2007,68(6):1186-1193
Biofiltration of waste gases is cost-effective and environment-friendly compared to the conventional techniques for treating large flow rates of gas streams with low concentrations of pollutants. Pulp and paper industry off-gases usually contain reduced sulfur compounds, such as hydrogen sulfide and a wide range of volatile organic compounds (VOCs), e.g., methanol. It is desirable to eliminate both of these groups of compounds. Since the co-treatment of inorganic sulfur compounds and VOCs in biotrickling filters is a relatively unexplored area, the simultaneous biotreatment of H2S and methanol as the model VOC was investigated. The results showed that, after adaptation, the elimination capacity of methanol could reach around 236 g m(-3) h(-1) with the simultaneous complete removal (100%) of 12 ppm H2S when the empty bed residence time is 24 s. The pH of the system was around 2. Methanol removal was hardly affected by the presence of hydrogen sulfide, despite the low pH. Conversely, the presence of the VOC in the waste gas reduced the efficiency of H2S biodegradation. The maximal methanol removal decreased somewhat when increasing the gas flow rate. This is the first report on the degradation of methanol at such low pH in a biotrickling filter and on the co-treatment of H2S and VOCs under such conditions.  相似文献   

19.
The treatment of waste air containing phenol vapors in biotrickling filter   总被引:2,自引:0,他引:2  
Moussavi G  Mohseni M 《Chemosphere》2008,72(11):1649-1654
This research aimed at investigating the biodegradation of phenol contaminated-air streams in biotrickling filter. The effect of inlet concentration (200-1000 ppmv) and empty bed contact time (EBCT) (15-60 s) were investigated under steady state, transient and shock loading, and shutdown periods. Upon rapid start up operation, inlet phenol concentrations of up to 1000 ppmv did not significantly affect the performance of the biotrickling filter at EBCT of 60 s, so that removal efficiency was well greater than 99%. In addition, the EBCT as low as 30 s did not have detrimental effects on the efficiency of the bioreactor and phenol removal was greater than 99%. Decreasing the EBCT to 15s reduced the removal efficiency to around 92%. The maximum elimination capacity obtained in the biotrickling filter was 642 g(phenol) m(-3) h(-1), where the removal efficiency was only 57%. Results from the transient loading experiments revealed that the biotrickling filter could effectively handle the variations of the inlet loads without the phenol removal capacity being significantly affected.  相似文献   

20.
Microbial metal leaching from sewage sludge (2-9% w/v) was carried out with the iron-oxidizing bacterium Thiobacillus ferrooxidans. Measurements of pH, oxidation-reduction potential, and concentration of Fe2+ indicated that T. ferrooxidans was effective in removing metals from an incubation bath containing less than 5% sludge solids concentration. Specifically, Cu leaching was completely suppressed at a high solids concentration of 9% (w/v). Results indicated that the deactivation of T. ferrooxidans at a high sludge content was mainly due to the presence of inhibiting materials such as organic matter. A mixed culture of sulfur-oxidizing bacteria was obtained by enrichment from anaerobically digested sewage sludge to enhance the efficiency of the microbial leaching process. These bacteria were much more effective in metal leaching than was iron-oxidizing T. ferrooxidans. At 9% (w/v) solids concentration, the leaching efficiencies of Zn and Cu were 78% (2.66 g/kg dry sludge) and 59% (1.36 g/kg dry sludge), respectively. Therefore, when removing heavy metals from the anaerobically digested sewage sludge, the indigenous sulfur-oxidizing bacteria isolated in the current study were more efficient than T. ferrooxidans, especially at high sludge solids concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号